Pandas库的Series数据类型及其操作详解

Series数据类型:有一组一维数组和索引组成

1.0 自动索引
如下代码所示:当只给定值,不给定索引的时候,系统将会自动补齐索引

>>> import pandas as pd
>>> a=pd.Series([1,2,3,4])
>>> a
0    1
1    2
2    3
3    4
dtype: int64

2.0 自定义索引
如下代码所示:给定俩组数据,前者表示值,后者表示自定义索引

>>> b=pd.Series([5,6,7,8],['a','b','c','d'])
>>> b
a    5
b    6
c    7
d    8
dtype: int64

3.0 可以用以下类型创建Series类型

  • python列表
  • 标量值
  • python字典
  • ndarray
  • 其他函数

3.1 使用标量值
使用标量值的时候,索引值给定后,标量将会根据索引填充

>>> c=pd.Series(25,index=['a','b','c'])
>>> c
a    25
b    25
c    25
dtype: int64

3.2 使用字典类型
字典类型相当于键值对

>>> d=pd.Series({'a':8,'b':5})
>>> d
a    8
b    5
dtype: int64

3.3 ndarray,相当于将ndarray的值分别赋给索引和值

>>> import numpy as np
>>> e=pd.Series(np.arange(5))#还可以给定index=np.arange()给定索引
>>> e
0    0
1    1
2    2
3    3
4    4
dtype: int32

4.0 Series基本操作(类ndarray类型)

4.1 对其的索引和值进行输出及查看其类型

>>> b.index
Index(['a', 'b', 'c', 'd'], dtype='object')
>>> b.values
array([5, 6, 7, 8], dtype=int64)

4.2 使用索引查看值,可以使用自动索引,也可以使用自定义索引

>>> b['a']
5
>>> b[1]
6
>>> b[['a','b',0]]   #俩种索引不能混用
a    5.0
b    6.0
0    NaN
dtype: float64

4.3 切片操作
如下代码所示:与其他的切片同理,

>>> b[:2]
a    5
b    6
dtype: int64

4.4 使用部分函数操作,如下代码所示:

>>> b[b>b.median()]  #中位数函数
c    7
d    8
dtype: int64

5.0 Series基本操作(类字典类型)
5.1 字典索引:索引键

>>> b['a']
5

5.2 in 关键字
使用该关键字获取的判断是使用该值和Series中索引进行判断

>>> 8 in b
False
>>> 2 in b
False
>>> 'a'  in b
True

5.3 get()函数
当存在该索引时,返回该索引对应的值,反之,返回get函数里面的参数

>>> b.get('f',36)
36
>>> b.get('a',36)
5

6.0 Series数据的运算
这是基于索引的运算,当有一方不存在该索引对应的值,则会返回NaN

>>> a=pd.Series([1,2,3],['c','d','e'])
>>> a
c    1
d    2
e    3
dtype: int64
>>> b
a    5
b    6
c    7
d    8
dtype: int64
>>> a+b
a     NaN
b     NaN
c     8.0
d    10.0
e     NaN
dtype: float64

7.0 name属性
该属性随时修改并立即生效

>>> b.name
>>> b.name='Serise数据'
>>> b.name
'Serise数据'
>>> b.index.name='列名'
>>> b
列名
a    5
b    6
c    7
d    8
Name: Serise数据, dtype: int64

8.0 Series实质上是一维带“标签”的数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Modify_QmQ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值