空间线与空间平面之间的夹角关系

本文介绍了在三维空间中计算线段间、线段与平面以及两个平面之间夹角的方法。通过向量表示和向量运算,可以求得0°到180°之间的夹角。涉及到的知识点包括向量的模、单位向量、点积和反余弦函数。对于线面夹角,还需考虑线段单位向量与平面法向量的点积。而对于面面夹角,直接计算两个法向量的点积即可。这些概念在立体几何和三维空间计算中至关重要。
摘要由CSDN通过智能技术生成

一、两条空间线之间的夹角

        假设已知两条空间线段的起始点以及结束点,那么可以得到这两条空间线段的向量表述形式,可以记作\vec{v_{1}}\vec{v_{2}}

        根据立体几何的相关知识可以得到:

\vec{v_{1}}\cdot \vec{v_{2}}=\left | v_{1} \right |\left | v_{2} \right |cos\theta

        如果\vec{v_{1}}\vec{v_{2}}均为单位向量,则可得:

cos\theta =\vec{v_{1}}\cdot \vec{v_{2}}

        如果 \vec{v_{1}}\vec{v_{2}} 并非单位向量,则还需计算 \vec{v_{1}}\vec{v_{2}} 的模:

cos\theta =\frac{\vec{v_{1}}\cdot \vec{v_{2}}}{\left | v_{1} \right |\left | v_{2} \right |}

        接下来只需要求反余切函数就可以求出两线之间的夹角大小,求出的夹角范围在0°到180°之间。

二、空间直线与空间平面

        假设已知空间线段的单位向量\vec{v_{1}}以及空间平面的单位法向量\vec{v_{2}}

        根据立体几何的相关知识可以得到:

\theta =arc(cos\theta )=arc(\vec{v_{1}}\cdot \vec{v_{2}})

        此时得到的\theta是空间平面的单位法向量与空间线段的单位向量所成的角度,要得到空间线段与空间平面所成的角度,还需要进行进一步讨论。

三、两个空间平面

        在了解了以上的立体几何知识后,可以很快得出两个空间平面所成夹角的大小:

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值