数学基础 -- 微积分之反常积分

反常积分与瑕点

1. 反常积分

反常积分(Improper Integrals)是在微积分中处理无穷区间或具有不连续点的积分的一种方法。反常积分主要分为两类:

1.1 无穷区间上的积分

当积分的区间是无穷区间时,积分上限或下限为无穷大,例如:

∫ a ∞ f ( x )   d x 或 ∫ − ∞ b f ( x )   d x \int_{a}^{\infty} f(x)\,dx \quad \text{或} \quad \int_{-\infty}^{b} f(x)\,dx af(x)dxbf(x)dx

这类积分称为“无穷区间上的反常积分”。计算这种积分的方法是将无穷的积分区间截断为有限区间,再取极限。例如:

∫ a ∞ f ( x )   d x = lim ⁡ b → ∞ ∫ a b f ( x )   d x \int_{a}^{\infty} f(x)\,dx = \lim_{b \to \infty} \int_{a}^{b} f(x)\,dx af(x)dx=blimabf(x)dx

1.2 被积函数在积分区间内有不连续点

当被积函数在积分区间内有不连续点,或趋于无穷大时,需要使用反常积分。例如:

∫ a b 1 ( x − c ) p   d x \int_{a}^{b} \frac{1}{(x-c)^{p}}\,dx ab(xc)p1dx

如果 p ≥ 1 p \geq 1 p1,并且 c c c ( a , b ) (a,b) (a,b) 之间,那么这个积分在 x = c x = c x=c 处不连续。为了计算这种积分,通常需要将积分拆分为两个部分并求极限:

∫ a b 1 ( x − c ) p   d x = lim ⁡ ϵ → 0 + ( ∫ a c − ϵ 1 ( x − c ) p   d x + ∫ c + ϵ b 1 ( x − c ) p   d x ) \int_{a}^{b} \frac{1}{(x-c)^{p}}\,dx = \lim_{\epsilon \to 0^{+}} \left( \int_{a}^{c-\epsilon} \frac{1}{(x-c)^{p}}\,dx + \int_{c+\epsilon}^{b} \frac{1}{(x-c)^{p}}\,dx \right) ab(xc)p1dx=ϵ0+lim(acϵ(xc)p1dx+c+ϵb(xc)p1dx)

1.3 反常积分的收敛性

反常积分可能收敛或发散。收敛的意思是取极限时结果是一个有限值;如果极限不存在或趋于无穷大,则该反常积分发散。

  • 收敛: 如果反常积分的极限存在并且是有限值。
  • 发散: 如果极限不存在或是无穷大。

1.4 例子

  1. 无穷区间上的反常积分:

    ∫ 1 ∞ 1 x 2   d x = lim ⁡ b → ∞ ∫ 1 b 1 x 2   d x = lim ⁡ b → ∞ [ − 1 x ] 1 b = lim ⁡ b → ∞ ( − 1 b + 1 ) = 1 \int_{1}^{\infty} \frac{1}{x^2}\,dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2}\,dx = \lim_{b \to \infty} \left[ -\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left( -\frac{1}{b} + 1 \right) = 1 1x21dx=blim1bx21dx=blim[x1]1b=blim(b1+1)=1

    这个积分收敛,值为 1。

  2. 积分区间内有不连续点的反常积分:

    ∫ 0 1 1 x   d x = lim ⁡ ϵ → 0 + ∫ ϵ 1 1 x   d x = lim ⁡ ϵ → 0 + [ 2 x ] ϵ 1 = lim ⁡ ϵ → 0 + ( 2 − 2 ϵ ) = 2 \int_{0}^{1} \frac{1}{\sqrt{x}}\,dx = \lim_{\epsilon \to 0^{+}} \int_{\epsilon}^{1} \frac{1}{\sqrt{x}}\,dx = \lim_{\epsilon \to 0^{+}} \left[ 2\sqrt{x} \right]_{\epsilon}^{1} = \lim_{\epsilon \to 0^{+}} \left( 2 - 2\sqrt{\epsilon} \right) = 2 01x 1dx=ϵ0+limϵ1x 1dx=ϵ0+lim[2x ]ϵ1=ϵ0+lim(22ϵ )=2

    这个积分也是收敛的,值为 2。

2. 反常积分的比较判别法

2.1 直接比较法

直接比较法适用于判断两个函数的积分在相同区间上的收敛性。其基本思想是通过比较两个函数的大小关系,来推断它们积分的收敛性。

定理

假设在区间 [ a , ∞ ) [a, \infty) [a,) 上,函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 满足 0 ≤ f ( x ) ≤ g ( x ) 0 \leq f(x) \leq g(x) 0f(x)g(x) 对所有 x ≥ a x \geq a xa 成立。那么:

  • 如果 ∫ a ∞ g ( x )   d x \int_{a}^{\infty} g(x)\,dx ag(x)dx 收敛,则 ∫ a ∞ f ( x )   d x \int_{a}^{\infty} f(x)\,dx af(x)dx 也收敛。
  • 如果 ∫ a ∞ f ( x )   d x \int_{a}^{\infty} f(x)\,dx af(x)dx 发散,则 ∫ a ∞ g ( x )   d x \int_{a}^{\infty} g(x)\,dx ag(x)dx 也发散。
例子

考虑以下两个函数:

f ( x ) = 1 x 2 + 1 和 g ( x ) = 1 x 2 f(x) = \frac{1}{x^2 + 1} \quad \text{和} \quad g(x) = \frac{1}{x^2} f(x)=x2+11g(x)=x21

对于 x ≥ 1 x \geq 1 x1,有 f ( x ) ≤ g ( x ) f(x) \leq g(x) f(x)g(x)

我们知道 ∫ 1 ∞ 1 x 2   d x \int_{1}^{\infty} \frac{1}{x^2}\,dx 1x21dx 是收敛的,因为它等于1。那么,根据直接比较法, ∫ 1 ∞ 1 x 2 + 1   d x \int_{1}^{\infty} \frac{1}{x^2 + 1}\,dx 1x2+11dx 也必定收敛。

2.2 极限比较法

极限比较法用于比较两个函数的积分是否具有相同的收敛性行为。通过研究两个函数在无穷远处的比值,可以判断它们积分的收敛性。

定理

假设在区间 [ a , ∞ ) [a, \infty) [a,) 上,函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是正值函数,并且极限存在:

lim ⁡ x → ∞ f ( x ) g ( x ) = L \lim_{x \to \infty} \frac{f(x)}{g(x)} = L xlimg(x)f(x)=L

其中 L L L 是一个正的有限常数。那么:

  • 如果 ∫ a ∞ g ( x )   d x \int_{a}^{\infty} g(x)\,dx ag(x)dx 收敛,则 ∫ a ∞ f ( x )   d x \int_{a}^{\infty} f(x)\,dx af(x)dx 也收敛。
  • 如果 ∫ a ∞ g ( x )   d x \int_{a}^{\infty} g(x)\,dx ag(x)dx 发散,则 ∫ a ∞ f ( x )   d x \int_{a}^{\infty} f(x)\,dx af(x)dx 也发散。
例子

考虑以下两个函数:

f ( x ) = 1 x 2 + x 和 g ( x ) = 1 x 2 f(x) = \frac{1}{x^2 + x} \quad \text{和} \quad g(x) = \frac{1}{x^2} f(x)=x2+x1g(x)=x21

我们计算极限:

lim ⁡ x → ∞ f ( x ) g ( x ) = lim ⁡ x → ∞ 1 x 2 + x 1 x 2 = lim ⁡ x → ∞ x 2 x 2 + x = lim ⁡ x → ∞ 1 1 + 1 x = 1 \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\frac{1}{x^2 + x}}{\frac{1}{x^2}} = \lim_{x \to \infty} \frac{x^2}{x^2 + x} = \lim_{x \to \infty} \frac{1}{1 + \frac{1}{x}} = 1 xlimg(x)f(x)=xlimx21x2+x1=xlimx2+xx2=xlim1+x11=1

因为 L = 1 L = 1 L=1 是一个正的有限常数,并且我们知道 ∫ 1 ∞ 1 x 2   d x \int_{1}^{\infty} \frac{1}{x^2}\,dx 1x21dx 收敛,因此根据极限比较法, ∫ 1 ∞ 1 x 2 + x   d x \int_{1}^{\infty} \frac{1}{x^2 + x}\,dx 1x2+x1dx 也收敛。

3. p p p 判别法

3.1 定理

考虑积分:

∫ 1 ∞ 1 x p   d x \int_{1}^{\infty} \frac{1}{x^p} \, dx 1xp1dx

根据 p p p 判别法,有:

  • p > 1 p > 1 p>1 时,积分收敛。
  • p ≤ 1 p \leq 1 p1 时,积分发散。

3.2 证明思路

  1. p ≠ 1 p \neq 1 p=1 时:

    计算积分:

    ∫ 1 ∞ 1 x p   d x = lim ⁡ b → ∞ ∫ 1 b x − p   d x \int_{1}^{\infty} \frac{1}{x^p} \, dx = \lim_{b \to \infty} \int_{1}^{b} x^{-p} \, dx 1xp1dx=blim1bxpdx

    x − p x^{-p} xp 进行不定积分:

    ∫ x − p   d x = x 1 − p 1 − p \int x^{-p} \, dx = \frac{x^{1-p}}{1-p} xpdx=1px1p

    因此:

    ∫ 1 ∞ 1 x p   d x = lim ⁡ b → ∞ [ x 1 − p 1 − p ] 1 b = lim ⁡ b → ∞ ( b 1 − p 1 − p − 1 1 − p 1 − p ) \int_{1}^{\infty} \frac{1}{x^p} \, dx = \lim_{b \to \infty} \left[ \frac{x^{1-p}}{1-p} \right]_{1}^{b} = \lim_{b \to \infty} \left( \frac{b^{1-p}}{1-p} - \frac{1^{1-p}}{1-p} \right) 1xp1dx=blim[1px1p]1b=blim(1pb1p1p11p)

    根据 p p p 的取值,我们有:

    • p > 1 p > 1 p>1 b 1 − p → 0 b^{1-p} \to 0 b1p0 b → ∞ b \to \infty b,因此:

      ∫ 1 ∞ 1 x p   d x = 1 p − 1 \int_{1}^{\infty} \frac{1}{x^p} \, dx = \frac{1}{p-1} 1xp1dx=p11

      积分收敛。

    • p < 1 p < 1 p<1 b 1 − p → ∞ b^{1-p} \to \infty b1p b → ∞ b \to \infty b,因此积分发散。

  2. p = 1 p = 1 p=1 时:

    积分变为:

    ∫ 1 ∞ 1 x   d x \int_{1}^{\infty} \frac{1}{x} \, dx 1x1dx

    这是一个对数积分,计算为:

    lim ⁡ b → ∞ ∫ 1 b 1 x   d x = lim ⁡ b → ∞ ln ⁡ ( b ) = ∞ \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} \, dx = \lim_{b \to \infty} \ln(b) = \infty blim1bx1dx=blimln(b)=

    因此积分发散。

4. 瑕点

瑕点(也称为奇点或不良点)是指函数在某个点处没有定义、不连续或者导数不存在的点。瑕点的存在可能导致积分或极限的计算变得复杂。

4.1 瑕点的类型

  • 可去奇点(Removable Singularity):

    • 如果函数在某点没有定义,但可以通过适当的重新定义使其在该点处连续,那么这个点就是一个可去奇点。
    • 例如,函数 f ( x ) = sin ⁡ x x f(x) = \frac{\sin x}{x} f(x)=xsinx x = 0 x = 0 x=0 处没有定义,但如果我们定义 f ( 0 ) = 1 f(0) = 1 f(0)=1,它在 x = 0 x = 0 x=0 处变得连续,因此 x = 0 x = 0 x=0 是一个可去奇点。
  • 极点(Pole):

    • 如果函数在某点趋近无穷大,则该点是一个极点。极点可以根据其增长的速率进一步分类为简单极点、二重极点等。
    • 例如,函数 f ( x ) = 1 x f(x) = \frac{1}{x} f(x)=x1 x = 0 x = 0 x=0 处趋于无穷大,因此 x = 0 x = 0 x=0 是一个简单极点。
  • 跳跃不连续点(Jump Discontinuity):

    • 当函数在某个点的左右极限存在但不相等时,该点称为跳跃不连续点。
    • 例如,阶跃函数 f ( x ) = { 0 if  x < 0 1 if  x ≥ 0 f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases} f(x)={01if x<0if x0 x = 0 x = 0 x=0 处存在跳跃不连续。
  • 本性奇点(Essential Singularity):

    • 本性奇点是最复杂的一类奇点。在该点附近,函数的行为极其复杂且不可预测。函数在该点附近的任何邻域内都会取遍所有复数值。
    • 例如,函数 f ( z ) = e 1 z f(z) = e^{\frac{1}{z}} f(z)=ez1 z = 0 z = 0 z=0 处存在本性奇点。

4.2 瑕点在积分中的影响

瑕点在积分计算中非常重要,因为它们可能会导致积分发散或收敛的行为发生变化。常见的处理方法包括:

  • 使用反常积分技术:当瑕点出现在积分区间内时,通常通过分段积分和取极限的方法来处理。
  • 变换变量:有时可以通过适当的变量替换,将积分中瑕点处的复杂行为简化。
  • 绕过奇点的路径积分:在复变函数中,路径积分绕过奇点时需要特别小心,特别是在使用留数定理时。

4.3 例子

考虑函数 f ( x ) = 1 ( x − 2 ) 2 f(x) = \frac{1}{(x-2)^2} f(x)=(x2)21 在区间 [ 1 , 3 ] [1, 3] [1,3] 上的积分:

∫ 1 3 1 ( x − 2 ) 2   d x \int_{1}^{3} \frac{1}{(x-2)^2} \, dx 13(x2)21dx

函数在 x = 2 x = 2 x=2 处有一个极点。为了计算这个积分,我们需要将积分区间分成两个部分,并分别取极限:

∫ 1 2 − ϵ 1 ( x − 2 ) 2   d x + ∫ 2 + ϵ 3 1 ( x − 2 ) 2   d x \int_{1}^{2-\epsilon} \frac{1}{(x-2)^2} \, dx + \int_{2+\epsilon}^{3} \frac{1}{(x-2)^2} \, dx 12ϵ(x2)21dx+2+ϵ3(x2)21dx

然后考虑 ϵ \epsilon ϵ 取向零的极限。

5. 总结

在数学分析中,反常积分、比较判别法、 p p p 判别法和瑕点等概念是处理复杂积分和极限问题的重要工具。通过理解和掌握这些概念,可以更有效地解决各种积分问题,并更深入地理解函数在不同区间上的行为。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值