目录
摘要
如何将大模型的技术能力应用到金融等垂直领域,是当前人工智能领域关注的热点问题。本文从AIGC落地方法论的角度出发,通过领域应用难点分析、场景选择方法论研究、落地方法和策略研究三大模块,为金融同业推动AIGC场景落地提供若干思路和参考。
关键词
ChatGPT 大语言模型 AIGC 领域应用 安全合规
以ChatGPT为代表的生成式自然语言大模型1快速发展,开启了人工智能的新一轮发展浪潮。大模型将深刻影响人类社会的生产生活方式。金融领域有高度规范的数据积累,扎实领先的数字化基础,并且拥有丰富的理解、感知、认知、决策需求场景,行业专家普遍判断大模型的优势能力在金融领域的应用前景可期。然而,推进大模型在金融领域的落地仍需克服一些困难。如何判断某场景是否适合应用大模型,如何具体应用大模型,如何保证安全合规等问题,均有待解决。
大模型解决领域应用问题的本质及要求
大模型是指具有大量参数的机器学习模型。这些模型可以在训练过程中处理大规模的数据集,预测能力更强、预测准确性更高。在自然语言、音频、视频、图像领域,均涌现出一些大模型。AIGC2即人工智能生成内容,是利用人工智能多种模态的大模型,根据给定的主题、关键词、格式、风格等条件,自动生成的各种文本、图像、音频、视频等内容。
在本轮人工智能革命中,技术是原动力,应用是牵引力,安全是信任力。如何将大模型的技术能力应用到垂直领域,是当前人工智能领域关注的热点问题,也是众多企业探索和研究的方向。大模型在解决领域应用问题时具有非常强大的潜力,但也面临着一些挑战。解决这些难点和挑战需要在多个方面不断努力、开展合作,譬如数据隐私和安全、数据不平衡、模型的可解释性、模型的部署和扩展、模型的可获得性等。
(一)领域应用的本质是复杂决策
目前ChatGPT较好地实现了机器与人类的开放式对话。然而,大模型的实际应用场景依赖机器的复杂决策能力,复杂决策是领域应用的根本特点。复杂决策意味着需要考虑诸多因素,包括但不限于数据的质量、规模、类别、分布等。此外,决策的准确度还依赖对综合任务的拆解能力、精细严密的规划能力、对宏观态势的研判能力等。这些能力之间相互交织、相互影响,决策的难度也随之增加。
因此,在实际应用场景中,AIGC需要结合人类专家的知识和经验,以更好地应对复杂决策(见图1)。例如,在金融领域中,可以使用AIGC来分析海量数据,以识别潜在的风险和机会,但是最终决策需要由人类专家来作出。同时,为了提高AIGC的决策能力,可以使用强化学习技术,令其不断进行学习和优化。对AIGC的决策结果进行评估和反馈,可以不断改进其决策能力。此外,还需要注意AIGC的透明度和可解释性,以更好地监督和管理其决策过程。
(二)领域应用的专业性要求较高
完成各种领域的特定任务依赖相对独立的密集知识,且推理链条复杂,需要对不同领域进行深入研究,才能确定最适合该领域的解决方案。专业领域可能缺乏足够的公开数据,导致在训练模型时存在数据不足的问题。另外,专业知识可能非常复杂,在模型训练过程中可能需要大量人工操作,帮助模型理解领域内的专业术语和概念、实体之间的关系等(见图2)。在应用到实际问题时,需要理解问题的上下文,对于专业问题,上下文可能非常抽象,这使得模型在处理问题时存在理解困难并导致过拟合或欠拟合情况。模型输出的可解释性也非常重要,在某些情况下模型输出的内容可能难以理解,既可能是七拼八凑的结果,也可能是暂未被人类认识到的潜藏逻辑推论,需要领域专家对预测结果进行判断、论证。
(三)金融领域应用对大模型有更高要求
金融领域拥有大量规范化程度较高的数据和良好的数字化技术基础,因此被认为是率先拥抱人工智能的行业之一。然而,要实现AIGC的大范围落地,还需要克服许多困难。首先,金融领域的各个场景都需要严谨的答案,对错误的容忍度较低ÿ