Mixup增强策略

mixup是2018年发表在ICLR上的一种数据增强方法,核心思想是从每个batch中随机选择两张图像,并以一定比例混合生成新的图像。需要注意的是,全部训练过程都只采用混合的新图像训练,原始图像不参与训练过程。

如何理解Mixup?下图是Mixup增强策略的简单可视化图。

具体地说,Mixup可以用以下数学概念来描述:

(x_iy_i)与(x_jy_j)是同一个batch中随机选择的两个样本及对应标签,\lambda为从beta分布中随机采样的数,\lambda \in [0, 1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值