mixup是2018年发表在ICLR上的一种数据增强方法,核心思想是从每个batch中随机选择两张图像,并以一定比例混合生成新的图像。需要注意的是,全部训练过程都只采用混合的新图像训练,原始图像不参与训练过程。
如何理解Mixup?下图是Mixup增强策略的简单可视化图。
具体地说,Mixup可以用以下数学概念来描述:
(,
)与(
,
)是同一个batch中随机选择的两个样本及对应标签,
为从beta分布中随机采样的数,
。
mixup是2018年发表在ICLR上的一种数据增强方法,核心思想是从每个batch中随机选择两张图像,并以一定比例混合生成新的图像。需要注意的是,全部训练过程都只采用混合的新图像训练,原始图像不参与训练过程。
如何理解Mixup?下图是Mixup增强策略的简单可视化图。
具体地说,Mixup可以用以下数学概念来描述:
(,
)与(
,
)是同一个batch中随机选择的两个样本及对应标签,
为从beta分布中随机采样的数,
。