加密流量分类torch实践2:CNN+LSTM模型训练与测试

加密流量分类torch实践2:CNN+LSTM模型训练与测试

1、原理

  • 一维卷积处理负载数据,处理流前n个包的前m个字节
  • Bi-LSTM处理包长序列,取流前seq_length的长度序列
  • 模型结构类似于APP-Net
  • 模型代码:
"""
cnn处理负载
lstm处理包长序列
"""

import torch
import torch.nn as nn


class Cnn_Lstm(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Cnn_Lstm, self).__init__()
        # rnn配置
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)

        self.cnn_feature = nn.Sequential(
            # 卷积层1
            nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12),  # (1,1024)->(32,1024)
            nn.BatchNorm1d(32),  # 加上BN的结果
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (32,1024)->(32,342)

            # 卷积层2
            nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12),  # (32,342)->(64,342)
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (64,342)->(64,114)
        )
        # 全连接层
        self.cnn_classifier = nn.Sequential(
            # 64*114
            nn.Flatten(),
            nn.Linear(in_features=64*114, out_features=1024), # 784:88*64, 1024:114*64, 4096:456*64
        )

        self.cnn=nn.Sequential(
            self.cnn_feature,
            self.cnn_classifier,
        )


        self.rnn = nn.Sequential(
            nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional, batch_first=True),
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=2048,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )


    def forward(self, x_payload,x_sequence):
        x_payload=self.cnn(x_payload)
        x_sequence=self.rnn(x_sequence)
        x_sequence=x_sequence[0][:, -1, :]
        x=torch.cat((x_payload,x_sequence),1)
        x=self.classifier(x)
        return x


def cnn_rnn(model_path, pretrained=False, **kwargs):
    model = Cnn_Lstm(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model


# 仅仅是CNN
class Cnn(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Cnn, self).__init__()
        # rnn配置
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)

        self.cnn_feature = nn.Sequential(
            # 卷积层1
            nn.Conv1d(kernel_size=25, in_channels=1, out_channels=32, stride=1, padding=12),  # (1,1024)->(32,1024)
            nn.BatchNorm1d(32),  # 加上BN的结果
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (32,1024)->(32,342)

            # 卷积层2
            nn.Conv1d(kernel_size=25, in_channels=32, out_channels=64, stride=1, padding=12),  # (32,342)->(64,342)
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3, padding=1),  # (64,342)->(64,114)
        )
        # 全连接层
        self.cnn_classifier = nn.Sequential(
            # 64*114
            nn.Flatten(),
            nn.Linear(in_features=64*114, out_features=1024), # 784:88*64, 1024:114*64, 4096:456*64
        )

        self.cnn=nn.Sequential(
            self.cnn_feature,
            self.cnn_classifier,
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=1024,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )


    def forward(self, x_payload,x_sequence):
        x_payload=self.cnn(x_payload)
        x=self.classifier(x_payload)
        return x_payload


def cnn(model_path, pretrained=False, **kwargs):
    model = Cnn(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model


class Lstm(nn.Module):
    def __init__(self,input_size, hidden_size, num_layers,bidirectional,num_classes=12):
        super(Lstm, self).__init__()
        # rnn配置
        self.bidirectional = bidirectional
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers,bidirectional=bidirectional,batch_first=True)
        self.fc0 = nn.Linear(hidden_size, num_classes)
        self.fc1= nn.Linear(hidden_size*2,num_classes)

        self.rnn = nn.Sequential(
            nn.LSTM(input_size, hidden_size, num_layers, bidirectional=bidirectional, batch_first=True),
        )
        self.classifier=nn.Sequential(
            nn.Linear(in_features=1024,out_features=num_classes),
            # nn.Dropout(p=0.7),
            # nn.Linear(in_features=1024,out_features=num_classes)
        )


    def forward(self, x_payload,x_sequence):
        x_sequence=self.rnn(x_sequence)
        x_sequence=x_sequence[0][:, -1, :]
        x=self.classifier(x_sequence)
        return x


def rnn(model_path, pretrained=False, **kwargs):
    model = Lstm(**kwargs)
    if pretrained:
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])
    return model


2、运行

  • 在自己的环境下修改路径,包括删除from sequence_payload.xx import xx下面的sequence_payload.
  • 修改配置文件entry下面的traffic_classification.yaml的路径,与模型参数,名字
    • 训练流程代码
from utils.helper import AverageMeter, accuracy
from TrafficLog.setLog import logger


def train_process(train_loader, model, criterion, optimizer, epoch, device, print_freq):
    """训练一个 epoch 的流程

    Args:
        train_loader (dataloader): [description]
        model ([type]): [description]
        criterion ([type]): [description]
        optimizer ([type]): [description]
        epoch (int): 当前所在的 epoch
        device (torch.device): 是否使用 gpu
        print_freq ([type]): [description]
    """
    losses = AverageMeter()  # 在一个 train loader 中的 loss 变化
    top1 = AverageMeter()  # 记录在一个 train loader 中的 accuracy 变化

    model.train()  # 切换为训练模型

    for i, (pcap, seq,target) in enumerate(train_loader):
        pcap = pcap.reshape(-1,1,1024)
        seq = seq.reshape(-1,64,1)
        pcap = pcap.to(device)
        seq = seq.to(device)
        target = target.to(device)

        output = model(pcap,seq)  # 得到模型预测结果
        loss = criterion(output, target)  # 计算 loss

        # 计算准确率, 记录 loss 和 accuracy
        # print(pcap.size(0))
        prec1 = accuracy(output.data, target)
        losses.update(loss.item(), pcap.size(0))
        top1.update(prec1[0].item(), pcap.size(0))

        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % print_freq == 0:
            logger.info('Epoch: [{0}][{1}/{2}], Loss {loss.val:.4f} ({loss.avg:.4f}), Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
                epoch, i, len(train_loader), loss=losses, top1=top1))
    return losses.val,top1.val

  • 验证流程代码:

2.1 数据预处理

原理:

  • 使用flowcontainer包提取含有tcp或者udp负载的包,提取负载与ip数据包序列长度

    使用:

  • 将原始pcap文件放在traffic_data

    • 格式:
      |---traffic_data
        |---bilibili
          |--- xx.pcap
          |--- xxx.pcap
        |---qq
          |--- xx.pcap
          |--- xxx.pcap
        |--- 今日头条
          |--- xx.pcap
          |--- xxx.pcap
    
  • 运行entry/preprocess.py,完成后复制控制台输出的__label2index__,粘贴到traffic_classification.yaml/test/traffic_classification.yaml

  • 得到处理好的 npy_data

2.2 训练

  • 打开entry/train.py,注释或者取消注释40、41、42行,选择cnn、lstm、cnn+lstm进行训练,记得改配置文件的model_name

  • 可以打开tensorboard查看loss与acc曲线

    • loss:
      在这里插入图片描述

    • acc:
      在这里插入图片描述

      两图为lstm处理序列数据的tensorboard示例

2.3 测试

  • 修改traffic_classification.yaml/test/evaluate为True,打开entry/train.py运行,得到评估结果
    /evaluate为True,打开entry/train.py``运行,得到评估结果
    在这里插入图片描述

代码参考:露露云的GitHub

  • 8
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 37
    评论
以下是使用PyTorch构建3层1D CNN LSTM Attention网络模型的代码示例: ```python import torch.nn as nn import torch.nn.functional as F class CNN_LSTM_Attention(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout_prob, kernel_size, stride): super(CNN_LSTM_Attention, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.num_layers = num_layers self.dropout_prob = dropout_prob self.kernel_size = kernel_size self.stride = stride self.conv_layers = nn.ModuleList() self.conv_layers.append(nn.Conv1d(in_channels=input_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride)) self.conv_layers.append(nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride)) self.conv_layers.append(nn.Conv1d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=kernel_size, stride=stride)) self.lstm = nn.LSTM(hidden_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, batch_first=True, dropout=dropout_prob) self.attention_layer = nn.Linear(hidden_dim*2, 1, bias=False) self.output_layer = nn.Linear(hidden_dim*2, output_dim) def forward(self, x): batch_size, seq_len, num_channels = x.size() x = x.permute(0, 2, 1) for conv_layer in self.conv_layers: x = conv_layer(x) x = F.relu(x) x = F.max_pool1d(x, kernel_size=self.kernel_size, stride=self.stride) x = x.permute(0, 2, 1) # LSTM layer h_0 = torch.zeros(self.num_layers*2, batch_size, self.hidden_dim).to(device) c_0 = torch.zeros(self.num_layers*2, batch_size, self.hidden_dim).to(device) lstm_out, (h_n, c_n) = self.lstm(x, (h_0, c_0)) lstm_out = lstm_out.view(batch_size, seq_len, self.hidden_dim*2) # Attention layer attention_weights = F.softmax(self.attention_layer(lstm_out), dim=1) attention_weights = attention_weights.permute(0,2,1) attention_weights = F.dropout(attention_weights, p=self.dropout_prob, training=self.training) output = torch.bmm(attention_weights, lstm_out).squeeze() # Output layer output = self.output_layer(output) return output ``` 在上面的代码中,我们首先定义了类`CNN_LSTM_Attention`,它继承自PyTorch的`nn.Module`基类。该类的主要部分包括三层1D卷积层、一层双向LSTM层、一层Attention层和一层输出层。 在`__init__`函数中,我们定义了输入维度`input_dim`、隐藏维度`hidden_dim`、输出维度`output_dim`、层数`num_layers`、dropout概率`dropout_prob`、卷积核大小`kernel_size`和步长`stride`。我们使用`nn.ModuleList`来保存卷积层。 在`forward`函数中,我们首先对数据进行转置,以便将序列长度放在第二维,这将便于进行卷积操作。我们然后依次通过三层1D卷积层,每层都是一个卷积层,一个ReLU激活层和一个最大池化层。 接下来,我们将数据传递给双向LSTM层,这将返回一个输出张量和一个元组,其中包含LSTM层的最后一个状态和单元状态。我们将输出张量重塑为(batch_size, seq_len, hidden_dim*2)的形状。 在Attention层中,我们首先将LSTM层的输出传递给一个线性层,以产生注意力权重。将注意力权重限制为0到1之间,以便它们可以被解释为加权和。我们随机丢弃注意力权重中的一部分,以减少过拟合,然后将它们与LSTM层的输出相乘,以得到加权和。最后,我们将加权和传递给输出层来生成最终的预测。 通过使用此三层1D CNN LSTM Attention网络,我们可以实现一种有效的序列到序列的建模方法,并应用于多种语音识别、自然语言处理、视频分析等场景中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值