pysot-toolkit--eval.py笔记(读取算法结果,根据评价指标计算结果并可视化)

本文详细探讨了pysot toolkit的eval.py,强调其与pysot eval的区别,特别是包含了VOT2019等最新数据集的评估程序。eval.py用于处理OTB系列、VOT2016、2018、VOT2018-LT、NFS、UAV及LaSOT等数据集的跟踪结果,并进行性能计算与可视化。
摘要由CSDN通过智能技术生成

pysot toolkit 的eval文件

目前pysot toolkit与pysot的eval不同之处在于是否有VOT2019等最新的数据集评价程序。
包含的数据有:

  • OTB系列
  • VOT2016, 2018(2017)短时序列
  • VOT2018-LT
  • NFS
  • UAV
  • LaSOT
import os
import sys
import time
import argparse
import functools
sys.path.append("./")
sys.path.append("C:/Users/lpf/Desktop/Code_of_Paper/pysot-toolkit")
from glob import glob
from tqdm import tqdm
from multiprocessing import Pool
from pysot.datasets import OTBDataset, UAVDataset, LaSOTDataset, VOTDataset, NFSDataset, VOTLTDataset
from pysot.evaluation import OPEBenchmark, AccuracyRobustnessBenchmark, EAOBenchmark, F1Benchmark
from pysot.visualization import draw_success_precision, draw_eao, draw_f1


dataset_dir = r"C:\Users\lpf\Desktop\Code_of_Paper\pysot-master\testing_dataset\OTB100"
# dataset_dir = r"F:\Linux2Win10\OTB1001\OTB100"
dataset = r"OTB100"

# tracker_results_dir = r"F:\Linux2Win10\OTB1001\OTB100_backup"
tracker_results_dir =  r"C:\Users\lpf\Desktop\Code_of_Paper\pysot-toolkit\results\OTB100"
# 'MDNet',
trackers = [ 'SiamCAR', 'CFNet', 'DaSiamRPN', 'GradNet', 'SRDCF', 'fDSST', 'DeepSRDCF', 'SiamRPN', 'SiamDWfc', 'Staple']
num = 10

if __name__ == '__main__':
    #step1、创建一个解析器——创建 ArgumentParser() 对象
    parser = argparse.ArgumentParser(description='Single Object Tracking Evaluation')

    #step2、添加参数——调用 add_argument() 方法添加参数
    parser.add_argument('--dataset_dir', type=str, default=dataset_dir, help='dataset root directory')#数据集根目录
    parser.add_argument('--dataset', type=str, default=dataset, help='dataset name')#数据集名称
    parser.add_argument('--tracker_result_dir', type=str, default=tracker_results_dir, help='tracker result root')#tracker 结果路径
    parser.add_argument('--trackers', default=trackers, nargs='+',help='Trackers name')#nargs='+' 设置一个或多个参数, 同时评估多个tracker
    parser.add_argument('--vis', dest='vis', action='store_true')#可视化,为真时绘图
    parser.add_argument('--show_video_level', dest='show_video_level', action='store_true')
    parse
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值