多策略演化博弈问题

最近在学习演化博弈方面的问题,本来想细化博弈策略,但发现现有论文基本上都是讨论两个策略的情况,而博弈主体可以有多个(见过最多的就是四个博弈主体)。
网上搜了很多,发现基本上没有什么解答,除了经管之家的一篇帖子,但是那已经是18年以前的帖子了,而且也没有人给出相关解答。
于是去搜了一下相关文献,发现多个策略(多于两个)的演化模型目前应该是做不到的,或者说没有相关的成熟、成功的文献。不过有一篇2022年发表的文献:Multi-strategy evolutionary games: A Markov chain approach. 这篇论文用了剪刀石头布这个游戏作为举例,相关代码在github上:
https://github.com/mehdiphy/rock-scissors-paper-evolutionary-game
个人觉得这是一个方法上的创新,有能力的或者有相关背景知识的朋友们或许可以尝试进行研究。

### 实现三个策略演化博弈MATLAB代码 为了展示如何在MATLAB中实现具有三种不同策略的演化博弈模型,下面提供了一个具体的例子。此示例假设存在合作(Cooperate, C)、背叛(Defect, D)以及随机(Random, R)这三种策略。 #### 初始化参数设置 ```matlab % 定义种群大小和初始频率分布 populationSize = 100; initialFrequencies = [0.3; 0.4; 0.3]; % 初始时C,D,R的比例分别为30%,40%,30% % 支付矩阵 (Payoff Matrix),行代表采取行动者,列代表对手动作 payoffs = [ 3, 0, 2; % 当前个体选择C时面对其他三种情况下的收益 5, 1, 1; % 当前个体选择D时... 2, 2, 2 % 当前个体选择R时... ]; ``` #### 计算适应度函数 ```matlab function fitnesses = calculateFitness(frequencies, payoffs) nStrategies = length(frequencies); avgPayoff = frequencies' * payoffs; fitnesses = zeros(nStrategies, 1); for i=1:nStrategies fitnesses(i) = sum(payoffs(:,i).*avgPayoff'); end end ``` #### 更新规则——复制动态方程 ```matlab timeSteps = 100; frequenciesHistory = zeros(length(initialFrequencies), timeSteps+1); frequenciesHistory(:,1) = initialFrequencies; for t=1:timeSteps currentFreqs = frequenciesHistory(:,t); fitnessValues = calculateFitness(currentFreqs, payoffs); meanFitness = sum(currentFreqs .* fitnessValues); nextFreqs = currentFreqs .* ((fitnessValues ./ meanFitness)); nextFreqs = nextFreqs / sum(nextFreqs); frequenciesHistory(:,t+1) = nextFreqs; end ``` 上述代码实现了基于支付矩阵`payoffs`定义的一个简单三策略演化博弈过程[^1]。通过迭代应用复制动态更新规则来模拟随着时间推移各策略比例的变化趋势[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值