概率论与数理统计-第一部分

1 事件关系与运算

1.1 事件关系

集合(事件)关系集合语言语言描述概率关系
包含 A ⊆ B A\subseteq B AB A A A 发生,则 B B B 一定发生 P ( A ) ⩽ P ( B ) P(A)\leqslant P(B) P(A)P(B)
等价 A = B A=B A=B A A A 发生 B B B 一定发生,反之亦然 P ( A ) = P ( B ) P(A)=P(B) P(A)=P(B)
⋂ k = 1 n A k \displaystyle\bigcap_{k=1}^{n}A_k k=1nAk事件 A k A_k Ak 同时发生 A k A_k Ak 互相独立, P ( ⋂ k = 1 n A k ) = ∏ k = 1 n P ( A k ) \displaystyle P\left(\bigcap_{k=1}^{n}A_k\right)=\prod_{k=1}^{n}P(A_k) P(k=1nAk)=k=1nP(Ak)
⋃ k = 1 n A k \displaystyle\bigcup_{k=1}^{n}A_k k=1nAk A k A_k Ak 至少有一个发生 ∀ i ≠ j , A i A j = ϕ , P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) \forall i\ne j,A_iA_j=\phi,\\P\left(\displaystyle\bigcup_{k=1}^{n}A_k\right)=\sum\limits_{k=1}^{n}P(A_k) i=j,AiAj=ϕ,P(k=1nAk)=k=1nP(Ak)
A − B = A B ˉ A-B=A\bar{B} AB=ABˉ A − B A-B AB 发生,仅当 A A A 发生 B B B 不发生 P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) \begin{aligned}P(A-B)&=P(A\bar{B})\\&=P(A)-P(AB)\end{aligned} P(AB)=P(ABˉ)=P(A)P(AB)
对立 A ˉ = Ω − A \bar{A}=\Omega-A Aˉ=ΩA A ˉ \bar{A} Aˉ 发生,当且仅当 A A A 不发生 P ( A ˉ ) = P ( Ω ) − P ( A ) = 1 − P ( A ) \begin{aligned}P(\bar{A})&=P(\Omega)-P(A)\\&=1-P(A)\end{aligned} P(Aˉ)=P(Ω)P(A)=1P(A)
互斥 A ∩ B = ϕ A\cap B=\phi AB=ϕ A , B A,B A,B 不可能同时发生 P ( A B ) = P ( ϕ ) = 0 P(AB)=P(\phi)=0 P(AB)=P(ϕ)=0
完备事件组 ⋃ k = 1 n A k = Ω , A i ∩ A j = ϕ ( 1 ⩽ i < j ⩽ n ) \displaystyle\bigcup_{k=1}^{n}A_k=\Omega,\\ \underset{(1\leqslant i<j\leqslant n)}{A_i\cap A_j=\phi} k=1nAk=Ω,(1i<jn)AiAj=ϕ一个两两互斥的事件组,它们的和等于必然事件 P ( ⋃ k = 1 n A k ) = P ( Ω ) = 1 P\left(\bigcup\limits_{k=1}^{n}A_k\right)=P(\Omega)=1 P(k=1nAk)=P(Ω)=1

1.2 运算性质

运算律集合语言(并)集合语言(交)
交换律 A ∪ B = B ∪ A A\cup B=B\cup A AB=BA A B = B A AB=BA AB=BA
结合律 ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup(B\cup C) (AB)C=A(BC) ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
分配律 ( A ∪ B ) ∩ C = A C ∪ B C (A\cup B)\cap C=AC\cup BC (AB)C=ACBC ( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap (B\cup C) (AB)C=(AC)(BC)
对偶律(德摩根律) ⋃ k = 1 n A k ˉ = ⋂ k = 1 n A k ˉ \displaystyle\bar{\bigcup_{k=1}^{n}A_k}=\bigcap_{k=1}^{n}\bar{A_k} k=1nAkˉ=k=1nAkˉ ⋃ k = 1 n A k ˉ = ⋂ k = 1 n A k ˉ \displaystyle\bigcup_{k=1}^{n}\bar{A_k}=\bar{\bigcap_{k=1}^{n}A_k} k=1nAkˉ=k=1nAkˉ

2 概率运算

2.1 性质

2.1.1 不可能事件与必然事件

不可能事件: P ( ϕ ) = 0 P(\phi)=0 P(ϕ)=0
必然事件: P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

Tips:
不可能事件概率为0,但概率为零的未必是不可能事件;概率为0未必是空集,概率为1未必是全集。

2.1.2 概率关系与事件关系

事件关系可推出概率关系,但概率关系无法推知事件关系。
点与线的面积为零,概率为零,例如:

P ( A ) = 0 ⇏ ⇐ A = ϕ P(A)=0 \begin{array}{c} \nRightarrow\\ \Leftarrow\\ \end{array} A=\phi P(A)=0A=ϕ

P ( A B ) = 0 ⇏ ⇐ A B = ϕ P(AB)=0 \begin{array}{c} \nRightarrow\\ \Leftarrow\\ \end{array} AB=\phi P(AB)=0AB=ϕ

P ( A ) = P ( A B ) ⇏ A = A B ⊂ B P(A)=P(AB)\nRightarrow A=AB\subset B P(A)=P(AB)A=ABB

2.2 公式

2.2.1 加法公式

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) = A , B 互斥 ⇔ P ( A B ) = 0 P ( A ) + P ( B ) \quad P(A\cup B)=P(A)+P(B)-P(AB)\xlongequal{A,B互斥\Leftrightarrow P(AB)=0}P(A)+P(B) P(AB)=P(A)+P(B)P(AB)A,B互斥P(AB)=0 P(A)+P(B)

推论:
P ( A ) + P ( B ) − 1 ⩽ P ( A ∪ B ) ⩽ 1 P ( A B ) = P ( A ) + P ( B ) − P ( A ∪ B ) ⩽ 0 ⩽ P ( A ∪ B ) P ( A ) + P ( B ) \begin{aligned} P(A)+P(B)-1 &\overset{_{P(A\cup B)\leqslant 1}}{\leqslant} P(AB)=P(A)+P(B)-P(A\cup B) \\ &\overset{_{0\leqslant P(A\cup B)}}{\leqslant}P(A)+P(B) \end{aligned} P(A)+P(B)1P(AB)1P(AB)=P(A)+P(B)P(AB)0P(AB)P(A)+P(B)

有限可加性:

A i A_i Ai 两两互斥 (即 ∀   i ≠ j , A i A j = ϕ \forall\ i\ne j,A_iA_j=\phi  i=j,AiAj=ϕ),则 P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) P\left (\bigcup\limits_{k=1}^{n}A_k\right)=\sum\limits_{k=1}^{n}P(A_k) P(k=1nAk)=k=1nP(Ak)

2.2.2 减法公式

P ( A − B ) = P ( A B ˉ ) = P ( A − A B ) = P ( A ) − P ( A B ) P(A-B)=P(A\bar{B})=P(A-AB)=P(A)-P(AB) P(AB)=P(ABˉ)=P(AAB)=P(A)P(AB)

推论:
P ( A − B ) = P ( A ) − P ( A B ) ⩾ A B ⊆ B ⇒ P ( A B ) ⩽ P ( B ) P ( A ) − P ( B ) P(A-B)=P(A)-P(AB)\overset{_{AB\subseteq B\Rightarrow P(AB)\leqslant P(B)}}{\geqslant}P(A)-P(B) P(AB)=P(A)P(AB)ABBP(AB)P(B)P(A)P(B)

2.2.3 对立事件

P ( A ˉ ) = 1 − P ( A )   , P ( A ˉ ∣ B ) = 1 − P ( A ∣ B ) P(\bar{A})=1-P(A)\ ,P(\bar{A}|B)=1-P(A|B) P(Aˉ)=1P(A) ,P(AˉB)=1P(AB)

2.2.4 条件概率

P ( A ∣ B ) = P ( A B ) P ( B ) = A , B  独立 ⇔ P ( A B ) = P ( A ) P ( B ) P ( A ) P(A|B)=\frac{P(AB)}{P(B)} \xlongequal{A,B\ 独立\Leftrightarrow P(AB)=P(A)P(B)}P(A) P(AB)=P(B)P(AB)A,B 独立P(AB)=P(A)P(B) P(A)

意义:
事件A<在事件B发生的条件下>发生的概率;条件概率的作用为限制条件,缩减样本空间,故所有运算法则皆可在“|”前使用。

2.2.5 乘法公式

P ( A B ) = { P ( A ) P ( B ∣ A )   , P ( A ) > 0 P ( B ) P ( A ∣ B )   , P ( B ) > 0 P(AB)=\left\{ \begin{array}{l} P(A)P(B|A)\ ,P(A)>0\\ \\ P(B)P(A|B)\ ,P(B)>0\\ \end{array} \right. P(AB)= P(A)P(BA) ,P(A)>0P(B)P(AB) ,P(B)>0

推广:
P ( ∏ k = 1 n A k ) = ∏ k = 1 n P ( A k ∣ ⋂ i = 0 k = 1 A i ) , A 0 = ϕ , P ( ⋂ k = 1 n A k ) > 0 P\left(\prod_{k=1}^{n}A_k\right)=\prod_{k=1}^{n}P\left(A_k|\bigcap_{i=0}^{k=1}A_i\right),{\color{brown}A_0=\phi,P\left(\bigcap_{k=1}^{n}A_k\right)>0} P(k=1nAk)=k=1nP(Aki=0k=1Ai),A0=ϕ,P(k=1nAk)>0

推论:
P ( A B ) = 0   ⇒   P ( A B C ) = P ( A B ) P ( A B C ∣ A B ) = 0 P(AB)=0\ \Rightarrow\ P(ABC)=P(AB)P(ABC|AB)=0 P(AB)=0  P(ABC)=P(AB)P(ABCAB)=0

2.2.6 全概率公式

A i A_i Ai 为完备事件组,则有
P ( B ) = P ( B Ω ) = P ( B ⋃ k = 1 n A k ) = ∑ k = 1 n P ( B A k ) = P ( A i ) > 0 ∑ k = 1 n P ( A k ) P ( B ∣ A k ) P(B)=P(B\Omega)=P\left(B\bigcup_{k=1}^{n}A_k\right)=\sum_{k=1}^n P(BA_k)\xlongequal{P(A_i)>0}\sum_{k=1}^{n}P(A_k)P(B|A_k) P(B)=P(BΩ)=P(Bk=1nAk)=k=1nP(BAk)P(Ai)>0 k=1nP(Ak)P(BAk)

意义:

随机试验分为两个阶段: 1 → P ( A i ) A i → P ( B ∣ A i ) B 1\xrightarrow{P(A_i)}A_i\xrightarrow{P(B|A_i)}B 1P(Ai) AiP(BAi) B,第一阶段多种可能结果为 A i A_i Ai,求解第二阶段某事件 B B B 的概率.

2.2.7 贝叶斯公式

A i A_i Ai 为完备事件组,则有
∀ 1 ⩽ m ⩽ n : P ( A m ∣ B ) = P ( B ) > 0 P ( B A m ) P ( B ) = P ( A i ) > 0 P ( A m ) P ( B ∣ A m ) ∑ k = 1 n P ( A k ) P ( B ∣ A k ) \forall 1\leqslant m\leqslant n:P(A_m|B)\xlongequal{P(B)>0}\frac{P(BA_m)}{P(B)}\xlongequal{P(A_i)>0}\frac{P(A_m)P(B|A_m)}{\displaystyle\sum_{k=1}^{n}P(A_k)P(B|A_k)} ∀1mn:P(AmB)P(B)>0 P(B)P(BAm)P(Ai)>0 k=1nP(Ak)P(BAk)P(Am)P(BAm)

2.2.8 常见概率不等关系

{ ∀ A : 0 ⩽ P ( A ) ⩽ 1 A ⊆ B   , P ( A ) ⩽ P ( B ) A B ⊆ A   , P ( A B ) ⩽ P ( A ) ⇒ { 0 ⩽ P ( A B C ) ⩽ P ( A B ) ⩽ P ( A ) P ( B ) ⩽ P ( A ∪ B ) ⩽ P ( A ∪ B ∪ C ) ⩽ 1 P ( A ) + P ( B ) − 1 ⩽ P ( A B ) = P ( A ) + P ( B ) − P ( A ∪ B ) ⩽ P ( A ) + P ( B ) P ( A − B ) = P ( A B ˉ ) = P ( A − A B ) = P ( A ) − P ( A B ) ⩾ P ( A ) − P ( B ) \begin{aligned} &\left\{ \begin{array}{l} \forall A:0\leqslant P(A)\leqslant 1\\ A\subseteq B\ ,P(A)\leqslant P(B)\\ AB\subseteq A\ ,P(AB)\leqslant P(A)\\ \end{array} \right. \\ \Rightarrow &\left\{ \begin{array}{l} 0\leqslant P(ABC)\leqslant P(AB)\leqslant P(A)\\ \\ P(B)\leqslant P(A\cup B)\leqslant P(A\cup B\cup C)\leqslant 1\\ \\ P(A)+P(B)-1\leqslant P(AB)=P(A)+P(B)-P(A\cup B)\leqslant P(A)+P(B)\\ \\ P(A-B)=P(A\bar{B})=P(A-AB)=P(A)-P(AB)\geqslant P(A)-P(B)\\ \end{array} \right. \end{aligned} A:0P(A)1AB ,P(A)P(B)ABA ,P(AB)P(A) 0P(ABC)P(AB)P(A)P(B)P(AB)P(ABC)1P(A)+P(B)1P(AB)=P(A)+P(B)P(AB)P(A)+P(B)P(AB)=P(ABˉ)=P(AAB)=P(A)P(AB)P(A)P(B)

Tips: 事件交更小,并更大

2.3 独立

2.3.1 相互独立

A , B 相互独立 ⇔   d e f     P ( A B ) = P ( A ) P ( B ) ⇔ A , B ˉ 独立 ⇔ A ˉ , B 独立 ⇔ A ˉ , B ˉ 独立 ⇔ P ( A ∣ B ) = P ( A ∣ B ˉ )   ( 0 < P ( B ) < 1 ) ⇔ P ( A ˉ ∣ B ) + P ( A ∣ B ˉ ) = 1   ( 0 < P ( B ) < 1 ) ⇔ P ( A ∣ B ) + P ( A ˉ ∣ B ˉ ) = 1   ( 0 < P ( B ) < 1 ) \begin{aligned} A,B 相互独立 &\xLeftrightarrow{\mathrm{\ def\ }}\ P(AB)=P(A)P(B) \\&\Leftrightarrow A,\bar{B}独立 \Leftrightarrow \bar{A},B 独立 \Leftrightarrow \bar{A},\bar{B} 独立 \\&\Leftrightarrow P(A|B)=P(A|\bar{B})\ (0<P(B)<1) \\&\Leftrightarrow P(\bar{A}|B)+P(A|\bar{B})=1\ (0<P(B)<1) \\&\Leftrightarrow P(A|B)+P(\bar{A}|\bar{B})=1\ (0<P(B)<1) \end{aligned} A,B相互独立 def   P(AB)=P(A)P(B)A,Bˉ独立Aˉ,B独立Aˉ,Bˉ独立P(AB)=P(ABˉ) (0<P(B)<1)P(AˉB)+P(ABˉ)=1 (0<P(B)<1)P(AB)+P(AˉBˉ)=1 (0<P(B)<1)

A , B , C 相互独立 ⇔ { P ( A B ) = P ( A ) P ( B ) P ( B C ) = P ( B ) P ( C ) P ( C A ) = P ( C ) P ( A ) } ⇔ A , B , C 两两独立 P ( A B C ) = P ( A ) P ( B ) P ( C ) A,B,C相互独立 \Leftrightarrow \left\{\begin{array}{l} \left.\begin{array}{r} P(AB)=P(A)P(B)\\ P(BC)=P(B)P(C)\\ P(CA)=P(C)P(A)\\ \end{array} \right\} \Leftrightarrow A,B,C两两独立\\ P(ABC)=P(A)P(B)P(C)\\ \end{array}\right. A,B,C相互独立 P(AB)=P(A)P(B)P(BC)=P(B)P(C)P(CA)=P(C)P(A) A,B,C两两独立P(ABC)=P(A)P(B)P(C)

2.3.2 独立与互斥
  1. A , B A,B A,B 独立 ⇔ P ( A B ) = P ( A ) P ( B ) ⇎ A , B \Leftrightarrow P(AB)=P(A)P(B) \nLeftrightarrow A,B P(AB)=P(A)P(B)A,B互斥 ⇔ A , B = ϕ ⇒ P ( A B ) = 0 \Leftrightarrow A,B=\phi \Rightarrow P(AB)=0 A,B=ϕP(AB)=0

  2. P ( A ) , P ( B ) > 0 P(A),P(B)>0 P(A),P(B)>0
    互斥一定不独立: P ( A B ) = P ( ϕ ) = 0 ≠ P ( A ) P ( B ) > 0 P(AB)=P(\phi)=0\ne P(A)P(B)>0 P(AB)=P(ϕ)=0=P(A)P(B)>0
    独立一定不互斥: P ( A B ) = P ( A ) P ( B ) > 0 ⇏ P ( A B ) = 0 P(AB)=P(A)P(B)>0\nRightarrow P(AB)=0 P(AB)=P(A)P(B)>0P(AB)=0

  3. P ( A ) = 0 , A P(A)=0,A P(A)=0,A ∀ B \forall B B 独立; A , B A,B A,B 也可能互斥,如 P ( A ) P ( B ) = 0 P(A)P(B)=0 P(A)P(B)=0

  4. 0 < P ( A ) , P ( B ) < 1 0<P(A),P(B)<1 0<P(A),P(B)<1,且 A B = ϕ AB=\phi AB=ϕ A ⊂ B ⇒ A , B A\subset B\Rightarrow A,B ABA,B 不独立.

  5. ϕ \phi ϕ 与任意事件既独立又互斥.

3 常见一维二维分布与三大抽样分布

3.1 一维r.v.

3.1.1 离散型r.v.
3.1.1.1 0-1分布 X ∼ B ( 1 , p ) X\thicksim B(1,p) XB(1,p)

意义:

1 1 1 次伯努利试验,成功率为 p p p,成功次数 X X X 服从0-1分布.

概率分布:
P { X = k } = P k ( 1 − p ) 1 − k   ( 0 < p < 1 ; k = 0 , 1 ) P\{X=k\}=P^k(1-p)^{1-k}\ (0<p<1;k=0,1) P{X=k}=Pk(1p)1k (0<p<1;k=0,1)

数字特征:
E ( X ) = p   ,   D ( X ) = p ( 1 − p ) E(X)=p\ ,\ D(X)=p(1-p) E(X)=p , D(X)=p(1p)

proof:

E ( X ) = 0 ⋅ P { X = 0 } + 1 ⋅ P { X = 1 } = 0 ⋅ ( 1 − p ) + 1 ⋅ p = p E ( X 2 ) = 0 2 ⋅ P { X 2 = 0 } + 1 2 ⋅ P { X 2 = 1 } = p D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = p ( 1 − p ) \begin{aligned} &E(X)=0\cdot P\{X=0\}+1\cdot P\{X=1\}=0\cdot (1-p)+1\cdot p=p \\&E(X^2)=0^2\cdot P\{X^2=0\}+1^2\cdot P\{X^2=1\}=p \\&D(X)=E(X^2)-[E(X)]^2=p(1-p) \end{aligned} E(X)=0P{X=0}+1P{X=1}=0(1p)+1p=pE(X2)=02P{X2=0}+12P{X2=1}=pD(X)=E(X2)[E(X)]2=p(1p)

3.1.1.2 二项分布 X ∼ B ( n , p ) X\thicksim B(n,p) XB(n,p)

意义:

n n n 次独立重复伯努利试验,成功率为 p p p,成功次数 X X X 服从二项分布.

概率分布:
P { X = k } = C n k   p k ( 1 − p ) n − k   ( 0 < p < 1 ; k = 0 , 1 , ⋯   , n ) P\{X=k\}=C_n^k\ p^k(1-p)^{n-k}\ (0<p<1;k=0,1,\cdots,n) P{X=k}=Cnk pk(1p)nk (0<p<1;k=0,1,,n)

独立可加性:
{ X ∼ B ( n , p ) Y ∼ B ( m , p ) ⇒ Z = X + Y ∼ B ( m + n , p ) \left\{\begin{array}{l}X\sim B(n,p)\\Y\sim B(m,p)\\ \end{array}\right. \Rightarrow Z=X+Y\sim B(m+n,p) {XB(n,p)YB(m,p)Z=X+YB(m+n,p)

数字特征:
E ( X ) = n p   ,   D ( X ) = n p ( 1 − p ) E(X)=np\ ,\ D(X)=np(1-p) E(X)=np , D(X)=np(1p)

proof1:
X X X 分解为 n n n 个独立同分布于 0 − 1 0-1 01 分布的随机变量,即
X = ∑ k = 1 n X k ∼ B ( n , p )   ,   X k ∼ B ( 1 , p ) X=\sum_{k=1}^nX_k\sim B(n,p)\ ,\ X_k\sim B(1,p) X=k=1nXkB(n,p) , XkB(1,p)
由 0-1 分布有
E ( X k ) = E ( X k 2 ) = p   ,   D ( X k ) = E ( X k 2 ) − E ( X k ) 2 = p ( 1 − p ) E(X_k)=E(X_k^2)=p\ ,\ D(X_k)=E(X_k^2)-E(X_k)^2=p(1-p) E(Xk)=E(Xk2)=p , D(Xk)=E(Xk2)E(Xk)2=p(1p)
于是
E ( X ) = ∑ k = 1 n E ( X k ) = n p   , D ( X ) = ∑ k = 1 n D ( X k ) = n p ( 1 − p ) E(X)=\sum_{k=1}^nE(X_k)=np\ ,D(X)=\sum_{k=1}^nD(X_k)=np(1-p) E(X)=k=1nE(Xk)=np ,D(X)=k=1nD(Xk)=np(1p)

proof2:
E ( X ) = ∑ k = 0 n k ⋅ P { X = k } = ∑ k = 0 n k ⋅ C n k p k ( 1 − p ) n − k = ∑ k = 1 n k ⋅ C n k p k ( 1 − p ) n − k = ∑ k = 1 n k ⋅ n ! k ! ( n − k ) ! p k ( 1 − p ) n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 ( 1 − p ) ( n − 1 ) − ( k − 1 ) = i = k − 1 n p ∑ i = 0 n − 1 ( n − 1 ) ! i ! [ ( n − 1 ) − i ] ! p i ( 1 − p ) ( n − 1 ) − i = n p ∑ i = 0 n − 1 C n − 1 i p i ( 1 − p ) ( n − 1 ) − i = n p [ p + ( 1 − p ) ] n − 1 = n p E ( X 2 ) = ∑ k = 0 n k 2 ⋅ C n k p k ( 1 − p ) n − k = ∑ k = 0 n [ k ( k − 1 ) + k ] C n k p k ( 1 − p ) n − k = ∑ k = 0 n k ( k − 1 ) C n k p k ( 1 − p ) n − k + E ( X ) = ∑ k = 0 n k ( k − 1 ) n ! k ! ( n − k ) ! p k ( 1 − p ) n − k + n p = n ( n − 1 ) p 2 ∑ k = 0 n ( n − 2 ) ! ( k − 2 ) ! ( n − k ) ! p k − 2 ( 1 − p ) ( n − 2 ) − ( k − 2 ) + n p = n ( n − 1 ) p 2 [ p + ( 1 − p ) ] n − 2 + n p = n ( n − 1 ) p 2 + n p D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = n p ( 1 − p ) \begin{aligned} E(X)&=\sum_{k=0}^{n}k\cdot P\{X=k\} =\sum_{k=0}^{n}k\cdot C_n^kp^k(1-p)^{n-k} \\&=\sum_{k=1}^{n}k\cdot C_n^kp^k(1-p)^{n-k} =\sum_{k=1}^{n}k\cdot\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k} \\&=np\sum_{k=1}^{n}\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{(n-1)-(k-1)} \\&\xlongequal{i=k-1}np\sum_{i=0}^{n-1}\frac{(n-1)!}{i![(n-1)-i]!}p^i(1-p)^{(n-1)-i} \\&=np\sum_{i=0}^{n-1}C_{n-1}^{i}p^i(1-p)^{(n-1)-i} =np[p+(1-p)]^{n-1}=np \\ \\E(X^2)&=\sum_{k=0}^{n}k^2\cdot C_n^kp^k(1-p)^{n-k} =\sum_{k=0}^{n}[k(k-1)+k]C_n^kp^k(1-p)^{n-k} \\&=\sum_{k=0}^{n}k(k-1)C_n^kp^k(1-p)^{n-k}+E(X) \\&=\sum_{k=0}^{n}k(k-1)\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}+np \\&=n(n-1)p^2\sum_{k=0}^{n}\frac{(n-2)!}{(k-2)!(n-k)!}p^{k-2}(1-p)^{(n-2)-(k-2)}+np \\&=n(n-1)p^2[p+(1-p)]^{n-2}+np=n(n-1)p^2+np \\ \\D(X)&=E(X^2)-[E(X)]^2=np(1-p) \end{aligned} E(X)E(X2)D(X)=k=0nkP{X=k}=k=0nkCnkpk(1p)nk=k=1nkCnkpk(1p)nk=k=1nkk!(nk)!n!pk(1p)nk=npk=1n(k1)!(nk)!(n1)!pk1(1p)(n1)(k1)i=k1 npi=0n1i![(n1)i]!(n1)!pi(1p)(n1)i=npi=0n1Cn1ipi(1p)(n1)i=np[p+(1p)]n1=np=k=0nk2Cnkpk(1p)nk=k=0n[k(k1)+k]Cnkpk(1p)nk=k=0nk(k1)Cnkpk(1p)nk+E(X)=k=0nk(k1)k!(nk)!n!pk(1p)nk+np=n(n1)p2k=0n(k2)!(nk)!(n2)!pk2(1p)(n2)(k2)+np=n(n1)p2[p+(1p)]n2+np=n(n1)p2+np=E(X2)[E(X)]2=np(1p)

3.1.1.3 几何分布 X ∼ G ( n , p ) X\thicksim G(n,p) XG(n,p)

意义:

n次独立重复伯努利试验,成功率为 p p p,首次成功次数 X X X 服从几何分布.

概率分布:

P { X = n } = p ( 1 − p ) n − 1   ( 0 < p < 1 ;   n = 0 , 1 , ⋯   ) P\{X=n\}=p(1-p)^{n-1}\ (0<p<1;\ n=0,1,\cdots) P{X=n}=p(1p)n1 (0<p<1; n=0,1,)

数字特征:

E ( X ) = 1   p     ,   D ( X ) = 1 − p p 2 E(X)=\frac{1}{\ p\ }\ ,\ D(X)=\frac{1-p}{p^2} E(X)= p 1 , D(X)=p21p

proof:
E ( X ) = ∑ n = 0 + ∞ n p ( 1 − p ) n − 1 = p ⋅ d d ( 1 − p ) [ ∑ n = 0 + ∞ ( 1 − p ) n ] = p ⋅ d d ( 1 − p ) [ 1 1 − ( 1 − p ) ] = 1 p E ( X 2 ) = ∑ n = 0 + ∞ n 2 p ( 1 − p ) n − 1 = p ⋅ d d ( 1 − p ) [ ∑ n = 0 + ∞ n ( 1 − p ) n ] = p ⋅ d d ( 1 − p ) [ ( 1 − p ) ⋅ ∑ n = 0 + ∞ n ( 1 − p ) n − 1 ] = p ⋅ d d ( 1 − p ) { ( 1 − p ) ⋅ d d ( 1 − p ) [ ∑ n = 0 + ∞ ( 1 − p ) n ] } = x = 1 − p p ⋅ [ x ⋅ ( 1 1 − x ) ′ ] ′ = p 1 − x 2 ( 1 − x ) 4 = 2 − p p 2 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 1 − p p 2 \begin{aligned} E(X)&=\sum_{n=0}^{+\infty}np(1-p)^{n-1}=p\cdot\frac{d}{\mathrm{d}(1-p)}\left[\sum_{n=0}^{+\infty}(1-p)^n\right] \\&=p\cdot\frac{d}{\mathrm{d}(1-p)}\left[\frac{1}{1-(1-p)}\right]=\frac{1}{p} \\E(X^2)&=\sum_{n=0}^{+\infty}n^2p(1-p)^{n-1}=p\cdot\frac{\mathrm{d}}{\mathrm{d}(1-p)}\left[\sum_{n=0}^{+\infty}n(1-p)^n\right] \\&=p\cdot\frac{\mathrm{d}}{\mathrm{d}(1-p)}\left[(1-p)\cdot\sum_{n=0}^{+\infty}n(1-p)^{n-1}\right] \\&=p\cdot\frac{\mathrm{d}}{\mathrm{d}(1-p)}\left\{(1-p)\cdot\frac{\mathrm{d}}{\mathrm{d}(1-p)}\left[\sum_{n=0}^{+\infty}(1-p)^{n}\right]\right\} \\&\xlongequal{x=1-p}p\cdot\left[x\cdot\left(\frac{1}{1-x}\right)'\right]'=p\frac{1-x^2}{(1-x)^4}=\frac{2-p}{p^2} \\D(X)&=E(X^2)-[E(X)]^2=\frac{1-p}{p^2} \end{aligned} E(X)E(X2)D(X)=n=0+np(1p)n1=pd(1p)d[n=0+(1p)n]=pd(1p)d[1(1p)1]=p1=n=0+n2p(1p)n1=pd(1p)d[n=0+n(1p)n]=pd(1p)d[(1p)n=0+n(1p)n1]=pd(1p)d{(1p)d(1p)d[n=0+(1p)n]}x=1p p[x(1x1)]=p(1x)41x2=p22p=E(X2)[E(X)]2=p21p

3.1.1.4 超几何分布 X ∼ H ( n , M , N ) X\thicksim H(n,M,N) XH(n,M,N)

意义:

N 件产品中 M 件不合格,随机抽 n 件,发现 k 件不合格的概率.

概率分布:

P { X = n } = C M k C N − M n − k C N n   ( k = 1 , 2 , ⋯   , min ⁡ { n , M } ; n , M ⩽ n ) P\{X=n\}=\frac{C_{_M}^kC_{_{N-M}}^{n-k}}{C_{_N}^n}\ (k=1,2,\cdots,\min\{n,M\};n,M\leqslant n) P{X=n}=CNnCMkCNMnk (k=1,2,,min{n,M};n,Mn)

数字特征:

E ( X ) = n M N   ,   D ( X ) = n M N ( 1 − M N ) N − n N − 1 E(X)=\frac{nM}{N}\ ,\ D(X)=\frac{nM}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1} E(X)=NnM , D(X)=NnM(1NM)N1Nn

3.1.1.5 泊松分布 X ∼ P ( λ ) X\thicksim P(\lambda) XP(λ)

意义:

λ \lambda λ 为单位时间(或单位面积)内随机事件的平均发生次数.

概率分布:
P { X = n } = λ k k ! e − λ   ( λ > 0 ; k = 0 , 1 , 2 , ⋯   ) \displaystyle P\{X=n\}=\frac{\lambda^k}{k!}e^{-\lambda}\ (\lambda>0;k=0,1,2,\cdots) P{X=n}=k!λkeλ (λ>0;k=0,1,2,)

数字特征:
E ( X ) = D ( X ) = λ E(X)=D(X)=\lambda E(X)=D(X)=λ

proof:
E ( X ) = ∑ k = 0 + ∞ k ⋅ λ k k ! e − λ = ∑ k = 1 + ∞ λ k ( k − 1 ) ! e − λ = λ e − λ ∑ k = 0 + ∞ λ k k ! = λ e − λ e λ = λ E ( X 2 ) = ∑ k = 0 + ∞ k 2 ⋅ λ k k ! e − λ = ∑ k = 1 + ∞ k 2 ⋅ λ k k ! e − λ = λ e − λ ∑ k = 1 + ∞ k ⋅ λ k − 1 ( k − 1 ) ! = λ e − λ [ ∑ k = 1 + ∞ λ k ( k − 1 ) ! ] ′ = λ e − λ [ λ ∑ k = 0 + ∞ λ k k ! ] ′ = λ e − λ ( λ e λ ) ′ = λ ( 1 + λ ) D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = λ ( 1 + λ ) − λ 2 = λ \begin{aligned} E(X)&=\sum_{k=0}^{+\infty}k\cdot \frac{\lambda^k}{k!}e^{-\lambda} =\sum_{k=1}^{+\infty}\frac{\lambda^k}{(k-1)!}e^{-\lambda} \\&=\lambda e^{-\lambda}\sum_{k=0}^{+\infty}\frac{\lambda^k}{k!} =\lambda e^{-\lambda}e^{\lambda}=\lambda \\E(X^2)&=\sum_{k=0}^{+\infty}k^2\cdot\frac{\lambda^k}{k!}e^{-\lambda} =\sum_{k=1}^{+\infty}k^2\cdot\frac{\lambda^k}{k!}e^{-\lambda} =\lambda e^{-\lambda}\sum_{k=1}^{+\infty}k\cdot\frac{\lambda^{k-1}}{(k-1)!} \\&=\lambda e^{-\lambda}\left[\sum_{k=1}^{+\infty}\frac{\lambda^{k}}{(k-1)!}\right]' =\lambda e^{-\lambda}\left[\lambda\sum_{k=0}^{+\infty}\frac{\lambda^{k}}{k!}\right]' \\&=\lambda e^{-\lambda}(\lambda e^{\lambda})'=\lambda(1+\lambda) \\D(X)&=E(X^2)-[E(X)]^2=\lambda(1+\lambda)-\lambda^2=\lambda \end{aligned} E(X)E(X2)D(X)=k=0+kk!λkeλ=k=1+(k1)!λkeλ=λeλk=0+k!λk=λeλeλ=λ=k=0+k2k!λkeλ=k=1+k2k!λkeλ=λeλk=1+k(k1)!λk1=λeλ[k=1+(k1)!λk]=λeλ[λk=0+k!λk]=λeλ(λeλ)=λ(1+λ)=E(X2)[E(X)]2=λ(1+λ)λ2=λ

泊松积分:
∫ 0 + ∞ e − x 2 d x = π 2 \displaystyle \int_{0}^{+\infty}e^{-x^2}\mathrm{d}x=\frac{\sqrt{\pi}}{2} 0+ex2dx=2π

proof1:(标准正态分布)
∫ 0 + ∞ 1 2 π e − 1 2 x 2 d x = t = x 2 ∫ 0 + ∞ 1 π e − t 2 d t = 1 2   ⇒ ∫ 0 + ∞ e − x 2 d x = π 2 \int_0^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}\mathrm{d}x\xlongequal{t=\frac{x}{\sqrt{2}}}\int_0^{+\infty}\frac{1}{\sqrt{\pi}}e^{-t^2}\mathrm{d}t=\frac{1}{2} \ \Rightarrow \int_{0}^{+\infty}e^{-x^2}\mathrm{d}x=\frac{\sqrt{\pi}}{2} 0+2π 1e21x2dxt=2 x 0+π 1et2dt=21 0+ex2dx=2π

proof2:(Gamma函数与余元公式)
∫ 0 + ∞ e − x 2 d x = 1 2 Γ ( 1 2 ) = 1 2 Γ ( 1 2 ) 2 = 1 2 Γ ( 1 2 ) Γ ( 1 − 1 2 ) = 1 2 π sin ⁡ ( π 2 ) = π 2 \begin{aligned} \int_0^{+\infty}e^{-x^2}\mathrm{d}x &=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{1}{2}\sqrt{\Gamma\left(\frac{1}{2}\right)^2}=\frac{1}{2}\sqrt{\Gamma\left(\frac{1}{2}\right)\Gamma\left(1-\frac{1}{2}\right)} \\&=\frac{1}{2}\sqrt{\frac{\pi}{\sin\left(\frac{\pi}{2}\right)}}=\frac{\sqrt{\pi}}{2} \end{aligned} 0+ex2dx=21Γ(21)=21Γ(21)2 =21Γ(21)Γ(121) =21sin(2π)π =2π

proof3:(累次积分)
∫ 0 + ∞ e − x 2 d x = ∫ 0 + ∞ e − y 2 d y = ∫ 0 + ∞ e − x 2 d x ∫ 0 + ∞ e − y 2 d y = ∬ [ 0 , + ∞ ] 2 e − ( x 2 + y 2 ) d x d y = ∫ 0 π 2 d θ ∫ 0 + ∞ e − r 2 r d r = t = r 2 1 2 ∫ 0 π 2 d θ ∫ 0 + ∞ e − t d t = 1 2 ∫ 0 π 2 d θ ∫ 0 + ∞ e − t d t = 1 2 ∫ 0 π 2 d θ = π 2 \begin{aligned} \int_0^{+\infty}e^{-x^2}\mathrm{d}x&=\int_0^{+\infty}e^{-y^2}\mathrm{d}y =\sqrt{\int_0^{+\infty}e^{-x^2}\mathrm{d}x\int_0^{+\infty}e^{-y^2}\mathrm{d}y} \\&=\sqrt{\iint_{[0,+\infty]^2}e^{-(x^2+y^2)}\mathrm{d}x\mathrm{d}y} =\sqrt{\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_0^{+\infty}e^{-r^2}r\mathrm{d}r} \\&\xlongequal{t=r^2}\sqrt{\frac{1}{2}\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_0^{+\infty}e^{-t}\mathrm{d}t} =\sqrt{\frac{1}{2}\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_0^{+\infty}e^{-t}\mathrm{d}t} \\&=\sqrt{\frac{1}{2}\int_0^{\frac{\pi}{2}}\mathrm{d}\theta}=\frac{\sqrt{\pi}}{2} \end{aligned} 0+ex2dx=0+ey2dy=0+ex2dx0+ey2dy =[0,+]2e(x2+y2)dxdy =02πdθ0+er2rdr t=r2 2102πdθ0+etdt =2102πdθ0+etdt =2102πdθ =2π

独立可加性:
X 1 , 2 ∼ P ( λ 1 , 2 )  且独立  ⇒   X 1 + X 2 ∼ P ( λ 1 + λ 2 ) X_{1,2}\thicksim P(\lambda_{1,2}) \ \text{且独立}\ \Rightarrow\ X_1+X_2\thicksim P(\lambda_1+\lambda_2) X1,2P(λ1,2) 且独立  X1+X2P(λ1+λ2)

3.1.2 连续型r.v.
3.1.2.1 均匀分布 X ∼ U ( a , b ) X\thicksim U(a,b) XU(a,b)

概率密度与分布函数:

f ( x ) = { 1 b − a   ,   a < x < b 0   ,   o t h e r w i s e ⇒ F ( x ) = {   0   , x < a ∫ a x d t b − a = x − a b − a , a ⩽ x < b   1   , x ⩾ b f(x)=\left\{\begin{array}{l} \displaystyle \frac{1}{b-a}\ ,\ a<x<b\\ \\ 0\qquad\ ,\ otherwise\\ \end{array}\right. \Rightarrow F(x)=\left\{\begin{array}{l} \ 0\qquad\qquad\qquad\qquad\ ,x<a\\ \displaystyle\int_a^x\frac{\mathrm{d}t}{b-a}=\frac{x-a}{b-a}\quad ,a\leqslant x<b\\ \ 1\qquad\qquad\qquad\qquad\ , x\geqslant b\\ \end{array}\right. f(x)= ba1 , a<x<b0 , otherwiseF(x)=  0 ,x<aaxbadt=baxa,ax<b 1 ,xb

数字特征:
E ( X ) = a + b 2   ,   D ( X ) = ( b − a ) 2 12 E(X)=\frac{a+b}{2}\ ,\ D(X)=\frac{(b-a)^2}{12} E(X)=2a+b , D(X)=12(ba)2

proof:
E ( X ) = ∫ a b x ⋅ 1 b − a d x = a + b 2 E ( X 2 ) = ∫ a b x 2 ⋅ 1 b − a d x = b 2 + a b + a 2 3 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = ( b − a ) 2 12 \begin{aligned} E(X)&=\int_a^b x\cdot\frac{1}{b-a}\mathrm{d}x=\frac{a+b}{2} \\E(X^2)&=\int_a^b x^2\cdot\frac{1}{b-a}\mathrm{d}x=\frac{b^2+ab+a^2}{3} \\D(X)&=E(X^2)-[E(X)]^2=\frac{(b-a)^2}{12} \end{aligned} E(X)E(X2)D(X)=abxba1dx=2a+b=abx2ba1dx=3b2+ab+a2=E(X2)[E(X)]2=12(ba)2

3.1.2.2 指数分布 X ∼ E ( λ ) X\thicksim E(\lambda) XE(λ)

概率密度与分布函数:

f ( x ) = { λ e − λ x , x > 0 0 , x ⩽ 0 ⇒   F ( x ) = { ∫ 0 x λ e − λ t d t = 1 − e − λ x , x > 0 0   , x ⩽ 0 ( λ > 0 ) f(x)=\left\{\begin{array}{l} \lambda e^{-\lambda x},x>0\\ 0\qquad,x\leqslant 0 \end{array}\right. \Rightarrow\ F(x)=\left\{\begin{array}{l} \displaystyle\int_0^x\lambda e^{-\lambda t}\mathrm{d}t=1-e^{-\lambda x},x>0\\ 0\qquad\qquad\qquad\qquad\quad\ ,x\leqslant 0\\ \end{array}\right.(\lambda >0) f(x)={λeλx,x>00,x0 F(x)= 0xλeλtdt=1eλx,x>00 ,x0(λ>0)

数字特征:

E ( X ) = 1   λ     ,   D ( X ) = 1   λ 2   \displaystyle E(X)=\frac{1}{\ \lambda\ }\ ,\ D(X)=\frac{1}{\ \lambda^2\ } E(X)= λ 1 , D(X)= λ2 1

proof:
E ( X ) = ∫ 0 + ∞ x ⋅ λ e − λ x d x = 1 λ ∫ 0 + ∞ ( λ x ) e − ( λ x ) d ( λ x ) = t = λ x − 1 λ [ t e − t ∣ 0 + ∞ − ∫ 0 + ∞ e − t d t ] = 1 λ E ( X 2 ) = 1 λ 2 ∫ 0 + ∞ ( λ x ) 2 e − ( λ x ) d ( λ x ) = t = λ x 2 λ 2 ∫ 0 + ∞ t e − t d t = 2 λ 2 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = 1 λ 2 \begin{aligned} E(X)&=\int_0^{+\infty}x\cdot\lambda e^{-\lambda x}\mathrm{d}x=\frac{1}{\lambda}\int_0^{+\infty}(\lambda x)e^{-(\lambda x)}\mathrm{d}(\lambda x) \\&\xlongequal{t=\lambda x}-\frac{1}{\lambda}\left[te^{-t}|_0^{+\infty}-\int_0^{+\infty}e^{-t}\mathrm{d}t\right] =\frac{1}{\lambda} \\E(X^2)&=\frac{1}{\lambda^2}\int_0^{+\infty}(\lambda x)^2e^{-(\lambda x)}\mathrm{d}(\lambda x) \xlongequal{t=\lambda x}\frac{2}{\lambda^2}\int_0^{+\infty}te^{-t}\mathrm{d}t=\frac{2}{\lambda^2} \\D(X)&=E(X^2)-[E(X)]^2=\frac{1}{\lambda^2} \end{aligned} E(X)E(X2)D(X)=0+xλeλxdx=λ10+(λx)e(λx)d(λx)t=λx λ1[tet0+0+etdt]=λ1=λ210+(λx)2e(λx)d(λx)t=λx λ220+tetdt=λ22=E(X2)[E(X)]2=λ21

3.1.2.3 正态分布(高斯分布)
3.1.2.3.1 一般正态 X ∼ N ( μ , σ 2 ) X\thicksim N(\mu,\sigma^2) XN(μ,σ2)

密度与分布:

f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 , x ∈ R   ⇒   F ( x ) = 1 2 π σ ∫ − ∞ x e − 1 2 ( t − μ σ ) 2 d t f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2},x\in\mathbb{R} \ \Rightarrow\ F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2}\mathrm{d}t f(x)=2π σ1e21(σxμ)2,xR  F(x)=2π σ1xe21(σtμ)2dt

数字特征:
E ( X ) = μ   ,   D ( X ) = σ 2 E(X)=\mu\ ,\ D(X)=\sigma^2 E(X)=μ , D(X)=σ2

proof:
E ( X ) = ∫ − ∞ + ∞ x ⋅ 1 2 π σ e − 1 2 ( x − μ σ ) 2 d x = y = x − μ σ 1 2 π ∫ − ∞ + ∞ ( σ y + μ ) e − 1 2 y 2 d y = μ 2 π ∫ − ∞ + ∞ e − 1 2 y 2 d y = μ π ⋅ 2 ∫ 0 + ∞ ( y 2 ) 2 ⋅ 1 2 − 1 e − ( y 2 ) 2 d ( y 2 ) = μ π Γ ( 1 2 ) = μ π ⋅ π = μ \begin{aligned} E(X)&=\int_{-\infty}^{+\infty}x\cdot\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}\mathrm{d}x \xlongequal{y=\frac{x-\mu}{\sigma}}\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}(\sigma y+\mu)e^{-\frac{1}{2}y^2}\mathrm{d}y \\&=\frac{\mu}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-\frac{1}{2}y^2}\mathrm{d}y =\frac{\mu}{\sqrt{\pi}}\cdot 2\int_0^{+\infty}\left(\frac{y}{\sqrt{2}}\right)^{2\cdot \frac{1}{2}-1}e^{-\left(\frac{y}{\sqrt{2}}\right)^2}\mathrm{d}\left(\frac{y}{\sqrt{2}}\right) \\&=\frac{\mu}{\sqrt{\pi}}\Gamma\left(\frac{1}{2}\right)=\frac{\mu}{\sqrt{\pi}}\cdot \sqrt{\pi}=\mu \end{aligned} E(X)=+x2π σ1e21(σxμ)2dxy=σxμ 2π 1+(σy+μ)e21y2dy=2π μ+e21y2dy=π μ20+(2 y)2211e(2 y)2d(2 y)=π μΓ(21)=π μπ =μ

3.1.2.3.2 标准正态 X ∼ N ( 0 , 1 ) X\thicksim N(0,1) XN(0,1)

密度与分布:

φ ( x ) = 1 2 π e − 1 2 x 2 , x ∈ R   ⇒   F ( x ) = u = t − μ σ Φ ( x ) = 1 2 π ∫ − ∞ x e − 1 2 u 2 d u \displaystyle \varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2},x\in\mathbb{R} \ \Rightarrow\ F(x)\xlongequal{u=\frac{t-\mu}{\sigma}}\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{1}{2}u^2}\mathrm{d}u φ(x)=2π 1e21x2,xR  F(x)u=σtμ Φ(x)=2π 1xe21u2du

3.1.2.4 伽马分布 X ∼ G a ( α , λ ) X\sim Ga(\alpha,\lambda) XGa(α,λ)
3.1.2.5 贝塔分布 X ∼ B e ( a , b ) X\sim Be(a,b) XBe(a,b)

3.2 二维r.v.

3.2.1 二维均匀分布 ( X , Y ) ∼ U ( D ) (X,Y)\thicksim U(D) (X,Y)U(D)

概率密度函数:

f ( x , y ) = { 1 ∬ D d x d y   ,   ( x , y ) ∈ D 0      ,   o t h e r w i s e f(x,y)=\left\{\begin{array}{l} \displaystyle \frac{1}{\iint_{_D}\mathrm{d}x\mathrm{d}y}\ ,\ (x,y)\in D\\ \\ 0 \qquad\quad\ \ \ \ ,\ otherwise\\ \end{array}\right. f(x,y)= Ddxdy1 , (x,y)D0    , otherwise

3.2.2 二维正态分布 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ X Y ) (X,Y)\thicksim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho_{_{XY}}) (X,Y)N(μ1,μ2;σ12,σ22;ρXY)

概率密度函数:

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( x − μ 2 ) σ 1 σ 2 + ( x − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x , y < + ∞ ) \displaystyle f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left\{\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(x-\mu_2)}{\sigma_1\sigma_2}+\frac{(x-\mu_2)^2}{\sigma_2^2}\right]\right\} \\(-\infty<x,y<+\infty) f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(xμ2)+σ22(xμ2)2]}(<x,y<+)

性质:

  1. ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ X Y ) = ( E X , E Y ; D X , D Y ; c o v ( X , Y ) D X D Y ) \displaystyle (\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho_{_{XY}})=\left(EX,EY;DX,DY;\frac{cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\right) (μ1,μ2;σ12,σ22;ρXY)=(EX,EY;DX,DY;DX DY cov(X,Y))

  2. (1) 独立 ⇒ ⇍ \begin{array}{c} \Rightarrow\\ \nLeftarrow\\ \end{array} 不相关;不相关即二者没有线性关系,可能有其他关系
    (2) 若 ( X , Y ) ∼ N (X,Y)\thicksim N (X,Y)N,则 X , Y X,Y X,Y独立 ⇔ X , Y \Leftrightarrow X,Y X,Y 不相关   ⇔ \ \Leftrightarrow   相关系数 ρ X Y = 0 \rho_{_{XY}}=0 ρXY=0

  3. (1) ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ X Y ) ⇒ ⇍ { X ∼ N ( μ 1 , σ 1 2 ) Y ∼ N ( μ 2 , σ 2 2 ) (X,Y)\thicksim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho_{_{XY}}) \begin{array}{c}\Rightarrow\\ \nLeftarrow\\ \end{array} \left\{\begin{array}{l} X\thicksim N(\mu_1,\sigma_1^2)\\ Y\thicksim N(\mu_2,\sigma_2^2)\\ \end{array}\right. (X,Y)N(μ1,μ2;σ12,σ22;ρXY){XN(μ1,σ12)YN(μ2,σ22)
    (2) { X ∼ N ( μ 1 , σ 1 2 ) Y ∼ N ( μ 2 , σ 2 2 ) \left\{\begin{array}{l} X\thicksim N(\mu_1,\sigma_1^2)\\ Y\thicksim N(\mu_2,\sigma_2^2)\\ \end{array}\right. {XN(μ1,σ12)YN(μ2,σ22)且独立 ⇒ ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; 0 ) \Rightarrow (X,Y)\sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;0) (X,Y)N(μ1,μ2;σ12,σ22;0)

  4. 两个正态分布的线性组合仍然服从正态分布,即
    { X ∼ N ( μ 1 , σ 1 2 ) Y ∼ N ( μ 2 , σ 2 2 ) \left\{\begin{array}{l} X\thicksim N(\mu_1,\sigma_1^2)\\ Y\thicksim N(\mu_2,\sigma_2^2)\\ \end{array}\right. {XN(μ1,σ12)YN(μ2,σ22),则 ∀ a , b \forall a,b a,b 不全为零, a X + b Y ∼ N ( a μ 1 + b μ 2 , a 2 σ 1 2 + b 2 σ 2 2 + 2 a b ρ X Y σ 1 σ 2 ) aX+bY\thicksim N(a\mu_1+b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2+2ab\rho_{_{XY}}\sigma_1\sigma_2) aX+bYN(aμ1+bμ2,a2σ12+b2σ22+2abρXYσ1σ2)

3.3 抽样分布

3.3.1 χ \chi χ 分布

定义:
{ X i ( i = 1 , ⋯   , n )  独立 X i ∼ N ( 0 , 1 ) ⇒ χ 2 = ∑ k = 1 n X i 2 ∼ χ 2 ( n ) \left\{\begin{array}{l} X_i(i=1,\cdots,n)\ 独立\\ X_i\thicksim N(0,1)\\ \end{array}\right. \Rightarrow \chi^2=\sum\limits_{k=1}^{n}X_i^2\thicksim \chi^2(n) {Xi(i=1,,n) 独立XiN(0,1)χ2=k=1nXi2χ2(n)

独立可加性:

χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) \chi_1^2\thicksim \chi^2(n_1),\chi_2^2\thicksim \chi^2(n_2) χ12χ2(n1),χ22χ2(n2) 且独立 ⇒ χ 1 2 + χ 1 2 ∼ χ 2 ( n 1 + n 2 ) \Rightarrow \chi_1^2+\chi_1^2\thicksim \chi^2(n_1+n_2) χ12+χ12χ2(n1+n2)

数字特征:

E ( χ 2 ( n ) ) = n   ,   D ( χ 2 ( n ) ) = 2 n E(\chi^2(n))=n\ ,\ D(\chi^2(n))=2n E(χ2(n))=n , D(χ2(n))=2n

推论:

  1. X ∼ N ( 0 , 1 ) ⇒ X 2 ∼ χ 2 ( 1 ) X\thicksim N(0,1)\Rightarrow X^2\sim \chi^2(1) XN(0,1)X2χ2(1)

  2. 自由度为2的卡方分布为参数0.5的指数分布: χ 2 ( 2 ) = E ( 1 2 ) \displaystyle \chi^2(2)=E\left(\frac{1}{2}\right) χ2(2)=E(21)

proof corollary2:
X , Y ∼ N ( 0 , 1 ) X,Y\thicksim N(0,1) X,YN(0,1) 且相互独立, Z = X 2 + Y 2 ∼ χ 2 ( 2 ) Z=X^2+Y^2\thicksim \chi^2(2) Z=X2+Y2χ2(2),则

F Z ( z ) = P { Z ⩽ z } = P { X 2 + Y 2 ⩽ z } = { ∬ x 2 + y 2 ⩽ z 1 2 π e − x 2 + y 2 2 d x d y = 1 − e − z 2 , z > 0 0 , z ⩽ 0 \begin{aligned} F_{_Z}(z)&=P\{Z\leqslant z\}=P\{X^2+Y^2\leqslant z\} \\&=\begin{cases} \displaystyle\iint\limits_{x^2+y^2\leqslant z}\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}\mathrm{d}x\mathrm{d}y=1-e^{-\frac{z}{2}}& ,z>0\\ \\ \qquad 0& ,z\leqslant 0\\ \end{cases} \end{aligned} FZ(z)=P{Zz}=P{X2+Y2z}= x2+y2z2π1e2x2+y2dxdy=1e2z0,z>0,z0

Z ∼ E ( 1 2 ) = χ 2 ( 2 ) Z\thicksim E\left(\frac{1}{2}\right)=\chi^2(2) ZE(21)=χ2(2)

分位点:
P { χ 2 > χ α 2 ( n ) } = ∫ χ α 2 ( n ) + ∞ f ( t ) d t = α = P { χ 2 ⩽ χ 1 − α 2 ( n ) } \displaystyle P\{\chi^2>\chi_{\alpha}^2(n)\}=\int_{\chi_{\alpha}^2(n)}^{+\infty}f(t)\mathrm{d}t=\alpha=P\{\chi^2\leqslant\chi_{1-\alpha}^2(n)\} P{χ2>χα2(n)}=χα2(n)+f(t)dt=α=P{χ2χ1α2(n)}

3.3.2 t t t 分布

定义:
{ X ∼ N ( 0 , 1 ) Y ∼ χ 2 ( n ) X , Y  独立 ⇒   t = X Y / n ∼ t ( n ) \left\{\begin{array}{l} X\thicksim N(0,1)\\ Y\thicksim \chi^2(n)\\ X,Y\ 独立\\ \end{array}\right. \Rightarrow\ t=\frac{X}{\sqrt{Y/n}}\thicksim t(n) XN(0,1)Yχ2(n)X,Y 独立 t=Y/n Xt(n)

性质:

  1. E ( t ( n ) ) = 0 E(t(n))=0 E(t(n))=0

  2. 密度函数为偶函数, n n n 足够大时近似分布于 N ( 0 , 1 ) N(0,1) N(0,1).

分位点:
P { t > t α ( n ) } = ∫ t α ( n ) + ∞ f ( t ) d t = α = P { t ⩽ t 1 − α ( n ) = − t α ( n ) } \displaystyle P\{t>t_{\alpha}(n)\}=\int_{t_{\alpha}(n)}^{+\infty}f(t)\mathrm{d}t=\alpha=P\{t\leqslant t_{1-\alpha}(n)=-t_{\alpha}(n)\} P{t>tα(n)}=tα(n)+f(t)dt=α=P{tt1α(n)=tα(n)}

3.3.3 F F F 分布

定义:
{ X ∼ χ 2 ( n 1 ) Y ∼ χ 2 ( n 2 ) X , Y  独立 ⇒   F = X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) \left\{\begin{array}{l} X\thicksim \chi^2(n_1)\\ Y\thicksim \chi^2(n_2)\\ X,Y\ 独立\\ \end{array}\right. \Rightarrow\ F=\frac{X/n_1}{Y/n_2}\thicksim F(n_1,n_2) Xχ2(n1)Yχ2(n2)X,Y 独立 F=Y/n2X/n1F(n1,n2)

性质:

  1. F ∼ F ( n 1 , n 2 ) ⇒ 1 F ∼ F ( n 1 , n 2 ) \displaystyle F\thicksim F(n_1,n_2)\Rightarrow \frac{1}{F}\thicksim F(n_1,n_2) FF(n1,n2)F1F(n1,n2)

  2. t = X Y / n ∼ t ( n ) ⇒ t 2 = X / 1 Y / n ∼ F ( 1 , n ) \displaystyle t=\frac{X}{\sqrt{Y/n}}\thicksim t(n)\Rightarrow t^2=\frac{X/1}{Y/n}\thicksim F(1,n) t=Y/n Xt(n)t2=Y/nX/1F(1,n)

分位点:

  1. P { F > F α ( n 1 , n 2 ) } = ∫ F α ( n 1 , n 2 ) + ∞ f ( t ) d t = α \displaystyle P\{F>F_{\alpha}(n_1,n_2)\}=\int_{F_{\alpha}(n_1,n_2)}^{+\infty}f(t)\mathrm{d}t=\alpha P{F>Fα(n1,n2)}=Fα(n1,n2)+f(t)dt=α

  2. F α ( n 1 , n 2 ) = 1 F 1 − α ( n 1 , n 2 ) \displaystyle F_{\alpha}(n_1,n_2)=\frac{1}{F_{1-\alpha}(n_1,n_2)} Fα(n1,n2)=F1α(n1,n2)1


附录

概率论与数理统计-第二部分
概率论与数理统计-第三部分

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值