优化|贝叶斯优化系列 (一):基础算法原理

本文由 简悦 SimpRead 转码, 原文地址 mp.weixin.qq.com

论文作者:Peter I. Frazier

论文解读者:胡明杰

编者按

贝叶斯优化是一种处理黑盒函数优化问题的重要方法。它通过构建一个目标函数的代理模型,并且利用贝叶斯机器学习方法如高斯过程回归来评估代理模型的不确定性。基于代理模型,通过一个采样函数来决定在哪里进行采样。本推文简单描述了贝叶斯优化方法的框架,包括高斯过程回归和三种常用的采样函数:期望提升,知识梯度,熵搜索和预测熵搜索。最后,本文提供了一些常用的高斯过程回归和贝叶斯优化的软件包。

1. 贝叶斯优化问题
在这里插入图片描述

2. 算法框架

在这里插入图片描述

在这里插入图片描述

3. 高斯过程回归
在这里插入图片描述

4. 采样函数

4.1 期望提升(Expected Improvement)

在这里插入图片描述

4.2 知识梯度(Knowledge Gradient)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4.3 熵搜索和预测熵搜索(Entropy Search and Predictive Entropy Search)

在这里插入图片描述

5. 软件

在这里插入图片描述

参考文献

[1] Frazier P I. A tutorial on Bayesian optimization[J]. arXiv preprint arXiv:1807.02811, 2018.

[2] Wu J, Frazier P. The parallel knowledge gradient method for batch Bayesian optimization[J]. Advances in neural information processing systems, 2016, 29.

[3] Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press, Cam bridge, MA.

文章须知

推文作者:胡明杰

责任编辑:陈宇文

微信编辑:疑疑

文章由『运筹 OR 帷幄』原创发布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值