线性代数——二次型

系列文章目录


版权声明

本文大部分内容皆来自李永乐老师考研教材和视频课。

二次型

将含有 n n n个变量 x 1 , x 2 , … , x n x_1,x_2,\dots,x_n x1,x2,,xn的二次齐次函数 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,,xn)称为 n n n二次型。现有一二次型
x 1 2 + 5 x 2 2 − 4 x 3 2 − 2 x 1 x 2 + 6 x 2 x 3 = x 1 2 − x 1 x 2 − x 1 x 2 + 5 x 2 2 + 3 x 2 x 3 + 3 x 2 x 3 − 4 x 3 2 = x 1 ( x 1 − x 2 ) + x 2 ( − x 1 + 5 x 2 + 3 x 3 ) + x 3 ( 3 x 2 − 4 x 3 ) = [ x 1 x 2 x 3 ] [ x 1 − x 2 − x 1 + 5 x 2 + 3 x 3 3 x 2 − 4 x 3 ] = [ x 1 x 2 x 3 ] [ 1 − 1 0 − 1 5 3 0 3 − 4 ] [ x 1 x 2 x 3 ] x_1^2+5x_2^2-4x_3^2-2x_1x_2+6x_2x_3\\ =x_1^2-x_1x_2-x_1x_2+5x_2^2+3x_2x_3+3x_2x_3-4x_3^2\\ =x_1(x_1-x_2)+x_2(-x_1+5x_2+3x_3)+x_3(3x_2-4x_3)\\ {=} \begin{bmatrix} x_1&x_2&x_3 \end{bmatrix} \begin{bmatrix} x_1-x_2\\ -x_1+5x_2+3x_3\\ 3x_2-4x_3 \end{bmatrix}\\ {=} \begin{bmatrix} x_1&x_2&x_3 \end{bmatrix} \begin{bmatrix} 1&-1&0\\ -1&5&3\\ 0&3&-4 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} x12+5x224x322x1x2+6x2x3=x12x1x2x1x2+5x22+3x2x3+3x2x34x32=x1(x1x2)+x2(x1+5x2+3x3)+x3(3x24x3)=[x1x2x3] x1x2x1+5x2+3x33x24x3 =[x1x2x3] 110153034 x1x2x3
那么对于 n n n元二次型有矩阵表示
f ( x 1 , x 2 , … , x n ) = x T A x f(x_1,x_2,\dots,x_n)=x^TAx f(x1,x2,,xn)=xTAx
其中 x = ( x 1 , x 2 , … , x n ) T , A = [ a i j ] x=(x_1,x_2,\dots,x_n)^T,A=[a_{ij}] x=(x1,x2,,xn)T,A=[aij],并且规定将 A A A化为对称矩阵,因为对称矩阵是唯一的,所以就能唯一确认一个二次型,那么就称 A A A二次型的矩阵 r ( A ) r(A) r(A)称为二次型的秩,记为 r ( f ) r(f) r(f)。 如果二次型中只含有变量的平方项,所有混合项 x i x j ( i ≠ j ) x_ix_j(i\neq j) xixj(i=j)的系数全为零,即
x T A x = d 1 x 1 2 + d 2 x 2 2 + ⋯ + d n x n 2 x^TAx=d_1x_1^2+d_2x_2^2+\dots+d_nx_n^2 xTAx=d1x12+d2x22++dnxn2
则称这样的二次型为标准型,在标准型中,若平方项的系数 d j d_j dj 1 , − 1 1,-1 1,1 0 0 0,即
x T A x = x 1 2 + x 2 2 + ⋯ + x p 2 − x p + 1 2 − ⋯ − x p + q 2 x^TAx=x_1^2+x_2^2+\dots+x_p^2-x_{p+1}^2-\dots-x_{p+q}^2 xTAx=x12+x22++xp2xp+12xp+q2
则称其为二次型的规范型。在标准型中,正平方项的个数 p p p称为二次型的正惯性指数,负平方项的个数 q q q称为二次型的负惯性指数

  • 在求解二次型的矩阵时,如果得出的矩阵 B B B不是对称矩阵,那么可通过以下方法将该矩阵化为对称矩阵 A A A
    • a i i = b i i a_{ii}=b_{ii} aii=bii
    • a i j = 1 2 ( b i j + b j i ) a_{ij}=\frac{1}{2}(b_{ij}+b_{ji}) aij=21(bij+bji)

坐标变换

如果
[ x 1 x 2 x 3 ]   = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] [ y 1 y 2 y 3 ] ⇓ x = C y \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} \ = \begin{bmatrix} c_{11}&c_{12}&c_{13}\\ c_{21}&c_{22}&c_{23}\\ c_{31}&c_{32}&c_{33}\\ \end{bmatrix} \begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}\\ \Downarrow\\ x=Cy x1x2x3  = c11c21c31c12c22c32c13c23c33 y1y2y3 x=Cy
满足 | C ∣ ≠ 0 \colorbox{axqua}|C|\neq 0 |C=0,则称上式为 x = ( x 1 , x 2 , x 3 ) T x=(x_1,x_2,x_3)^T x=(x1,x2,x3)T y = ( y 1 , y 2 , y 3 ) T y=(y_1,y_2,y_3)^T y=(y1,y2,y3)T坐标变换。任何一个二次型 x T A x x^TAx xTAx都可以通过坐标变换化成标准型,通常有以下两种方法:

  • 配方法
    例:将二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 2 x 2 2 + 5 x 3 2 + 2 x 1 x 2 + 2 x 1 x 3 + 6 x 2 x 3 f(x_1,x_2,x_3)=x_1^2+2x_2^2+5x_3^2+2x_1x_2+2x_1x_3+6x_2x_3 f(x1,x2,x3)=x12+2x22+5x32+2x1x2+2x1x3+6x2x3化为标准型。
    解:
    f ( x 1 , x 2 , x 3 ) = [ x 1 2 + 2 x 1 ( x 2 + x 3 ) + ( x 2 + x 3 ) 2 ] − ( x 2 + x 3 ) 2 + 2 x 2 2 + 5 x 3 2 + 6 x 2 x 3 = ( x 1 + x 2 + x 3 ) 2 + x 2 2 + 4 x 2 x 3 + 4 x 3 2 = ( x 1 + x 2 + x 3 ) 2 + ( x 2 + x 3 ) 2 f(x_1,x_2,x_3)=[x_1^2+2x_1(x_2+x_3)+(x_2+x_3)^2]-(x_2+x_3)^2+2x_2^2+5x_3^2+6x_2x_3\\ =(x_1+x_2+x_3)^2+x_2^2+4x_2x_3+4x_3^2\\ =(x_1+x_2+x_3)^2+(x_2+x_3)^2 f(x1,x2,x3)=[x12+2x1(x2+x3)+(x2+x3)2](x2+x3)2+2x22+5x32+6x2x3=(x1+x2+x3)2+x22+4x2x3+4x32=(x1+x2+x3)2+(x2+x3)2

    { y 1 = x 1 + x 2 + x 3 y 2 = x 2 + x 3 y 3 = x 3 ⇒ { x 1 = y 1 − y 2 + y 3 x 2 = y 2 − 2 y 3 x 3 = y 3 \begin{cases} y_1=x_1+x_2+x_3\\ y_2=x_2+x_3\\ y_3=x_3 \end{cases} \Rightarrow \begin{cases} x_1=y_1-y_2+y_3\\ x_2=y_2-2y_3\\ x_3=y_3 \end{cases} y1=x1+x2+x3y2=x2+x3y3=x3 x1=y1y2+y3x2=y22y3x3=y3
    x = C y , C = [ 1 − 1 1 0 1 − 2 0 0 1 ] x=Cy,C=\begin{bmatrix}1&-1&1\\0&1&-2\\0&0&1\end{bmatrix} x=Cy,C= 100110121
  • 正交变换法
    当且仅当 A A A n n n阶实对称矩阵时, A A A必可对角化,且总存在正交矩阵 Q Q Q,使得
    Q − 1 A Q = Q T A Q = Λ = [ λ 1 λ 2 ⋱ λ n ] Q^{-1}AQ=Q^TAQ=\Lambda= \begin{bmatrix} \lambda_1&&&\\ &\lambda_2&&\\ &&\ddots&\\ &&&\lambda_n\\ \end{bmatrix} Q1AQ=QTAQ=Λ= λ1λ2λn
    那么令 x = Q y x=Qy x=Qy,则
    x T A x = ( Q y ) T A ( Q y ) = y T Q T A Q y = y T Λ y = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 x^TAx=(Qy)^TA(Qy)\\ =y^TQ^TAQy\\ =y^T\Lambda y\\ =\lambda_1y_1^2+\lambda_2y_2^2+\dots+\lambda_ny_n^2 xTAx=(Qy)TA(Qy)=yTQTAQy=yTΛy=λ1y12+λ2y22++λnyn2
    即对任意一个 n n n元二次型 x T A x x^TAx xTAx,其中 A A A n n n阶实对称矩阵,必存在正交变换 x = Q y x=Qy x=Qy Q Q Q是正交矩阵),使得 x T A x x^TAx xTAx化成标准型
    λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 \lambda_1y_1^2+\lambda_2y_2^2+\dots+\lambda_ny_n^2 λ1y12+λ2y22++λnyn2
    这里 λ 1 , λ 2 , … λ n \lambda_1,\lambda_2,\dots\lambda_n λ1,λ2,λn A A A n n n个特征值。对标准型再次进行坐标变换即可化为规范型。

坐标变换的性质如下:

  • 二次型 x T A x x^TAx xTAx经坐标变换 x = C y x=Cy x=Cy得到二次型 y T B y y^TBy yTBy,其中 B = C T A C B=C^TAC B=CTAC
  • 惯性定理:对于一个二次型,不论选取怎样的坐标变换使其化为标准型,其中正平方项的个数 p p p,负平方项的个数 q q q都是由所给二次型唯一确定的。即二次型的规范型是唯一确认的。

矩阵合同

两个 n n n阶矩阵 A A A B B B,如果存在可逆矩阵 C C C,使得 B = C T A C B=C^TAC B=CTAC就称矩阵 A A A B B B合同,记作 A ≃ B A\simeq B AB,并称由 A A A B B B的变换为合同变换,称 C C C为合同变换的矩阵。 给定一个二次型
f ( x 1 , x 2 , x 3 ) = x T A x f(x_1,x_2,x_3)=x^TAx f(x1,x2,x3)=xTAx
对其进行一次任意的 x = C y x=Cy x=Cy坐标变换:
f ( x 1 , x 2 , x 3 ) = x T A x = ( C y ) T A ( C y ) = y T C T A C y = y T B y f(x_1,x_2,x_3)=x^TAx\\ =(Cy)^TA(Cy)\\ =y^TC^TACy\\ =y^TBy f(x1,x2,x3)=xTAx=(Cy)TA(Cy)=yTCTACy=yTBy
其中 B = C T A C B^=C^TAC B=CTAC,即 A ≃ B ⇔ A\simeq B\Leftrightarrow AB对二次型 x T A x x^TAx xTAx做一次 x = C y x=Cy x=Cy坐标变换。合同的性质如下:

  • A ≃ A A\simeq A AA
  • A ≃ B ⇒ B ≃ A A\simeq B\Rightarrow B\simeq A ABBA
  • A ≃ B , B ≃ C ⇒ A ≃ C A\simeq B,B\simeq C\Rightarrow A\simeq C AB,BCAC
  • 对于实对称矩阵而言:
    • A ≃ B ⇔ x T A x A\simeq B\Leftrightarrow x^TAx ABxTAx x T B x x^TBx xTBx有相同的正、负惯性指数。
    • A ≃ B A\simeq B AB,其中一个为实对称矩阵,则另一个必为实对称矩阵。

正定二次型

设二次型 x T A x x^TAx xTAx,如果对任何 x ≠ O x\neq O x=O,恒有 x T A x > 0 x^TAx>0 xTAx>0,则称二次型 x T A x x^TAx xTAx正定二次型,并称矩阵 A A A正定矩阵

  • 正定二次型经坐标变换其正定性保持不变。
  • n n n元二次型 x T A x x^TAx xTAx正定
    ⇔ A \Leftrightarrow A A的正惯性指数是 n n n
    ⇔ A \Leftrightarrow A A E E E合同
    ⇔ A \Leftrightarrow A A的所有特征值均为正数
    ⇔ A \Leftrightarrow A A的各阶顺序主子式均大于零
    ⇒ a i i > 0 \Rightarrow a_{ii}>0 aii>0
    ⇒ ∣ A ∣ > 0 \Rightarrow |A|>0 A>0
    ⇒ \Rightarrow 平方项系数大于零

偏导法求解二次型

在使用配方法求解二次型的规范型时,极其需要技巧性,而偏导法求是一种通用型的简易方法,它将求解二次型分为以下两种情形:

  • 情形一:如果 f ( x 1 , … , x n ) f(x_1,\dots,x_n) f(x1,,xn)中含有某变量的平方项,即 a i i ( i = 1 , … , n ) a_{ii}(i=1,\dots,n) aii(i=1,,n)中至少有一个不为零,不妨设 a 11 ≠ 0 a_{11}\neq0 a11=0,记 f 1 = 1 2 ∂ f ∂ x 1 f_1=\frac{1}{2} \frac{\partial f}{\partial x_1} f1=21x1f,令
    f ( x 1 , … , x n ) = 1 a 11 ( f 1 ) 2 + g f(x_1,\dots,x_n)=\frac{1}{a_{11}}(f_1)^2+g f(x1,,xn)=a111(f1)2+g
    求得 g g g,此时 g g g中已不含 x 1 x_1 x1,再记 g 1 = 1 2 ∂ g ∂ x 2 g_1=\frac{1}{2} \frac{\partial g}{\partial x_2} g1=21x2g,并令
    f ( x 1 , … , x n ) = 1 a 11 ( f 1 ) 2 + 1 a 22 ( g 1 ) 2 + h f(x_1,\dots,x_n)=\frac{1}{a_{11}}(f_1)^2+\frac{1}{a_{22}}(g_1)^2+h f(x1,,xn)=a111(f1)2+a221(g1)2+h
    此时 h h h中已不含 x 1 x_1 x1 x 2 x_2 x2,按照这种步骤继续运算,可将二次型转换为标准型。
  • 情形二:如果 f ( x 1 , … , x n ) f(x_1,\dots,x_n) f(x1,,xn)中不含有任一变量的平方项,即 a i i = 0 ( i = 1 , … , n ) a_{ii}=0(i=1,\dots,n) aii=0(i=1,,n),但至少有一个 a 1 j ≠ 0 ( j > 1 ) a_{1j}\neq0(j>1) a1j=0(j>1)不为零 ( a i j (a_{ij} (aij x 1 x 2 x_1x_2 x1x2项的系数),不妨设 a 12 ≠ 0 a_{12}\neq0 a12=0,记 f 1 = 1 2 ∂ f ∂ x 1 , f 2 = 1 2 ∂ f ∂ x 2 f_1=\frac{1}{2}\frac{\partial f}{\partial x_1},f_2=\frac{1}{2}\frac{\partial f}{\partial x_2} f1=21x1f,f2=21x2f,令
    f ( x 1 , … , x n ) = 1 a 12 [ ( f 1 + f 2 ) 2 − ( f 1 − f 2 ) 2 ] + ψ f(x_1,\dots,x_n)=\frac{1}{a_{12}}[(f_1+f_2)^2-(f_1-f_2)^2]+\psi f(x1,,xn)=a121[(f1+f2)2(f1f2)2]+ψ
    求得 ψ \psi ψ,此时 ψ \psi ψ中已不含 x 1 x_1 x1 x 2 x_2 x2,观察 ψ \psi ψ的结构,如果 ψ \psi ψ中含有变量的平方项,则按照情形1中的方法进行,否则按照情形2中的方法进行,直至二次型化为标准型。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亻乍屯页女子白勺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值