第四章 向量组的线性相关性

  本章主要介绍了向量组的线性相关性的应用。

目录

4. 问 a a a取什么值时下列向量线性相关? a 1 = ( a 1 1 ) , a 2 = ( 1 a − 1 ) , a 1 = ( 1 − 1 a ) . \bm{a}_1=\begin{pmatrix}a\\1\\1\end{pmatrix},\bm{a}_2=\begin{pmatrix}1\\a\\-1\end{pmatrix},\bm{a}_1=\begin{pmatrix}1\\-1\\a\end{pmatrix}. a1=a11,a2=1a1,a1=11a.

  记 A = ( a 1 , a 2 , a 3 ) \bm{A}=(\bm{a}_1,\bm{a}_2,\bm{a}_3) A=(a1,a2,a3),则
d e t A = ∣ a 1 1 1 a − 1 1 − 1 a ∣ = r 2 + r 1 ∣ a 1 1 a + 1 a + 1 0 1 − 1 a ∣ = c 1 − c 2 ∣ a − 1 1 1 0 a + 1 0 2 − 1 a ∣ = ( a + 1 ) 2 ( a − 2 ) . \begin{aligned} \mathrm{det}\bm{A}&=\begin{vmatrix}a&1&1\\1&a&-1\\1&-1&a\end{vmatrix}\xlongequal{r_2+r_1}\begin{vmatrix}a&1&1\\a+1&a+1&0\\1&-1&a\end{vmatrix}\\ &\xlongequal{c_1-c_2}\begin{vmatrix}a-1&1&1\\0&a+1&0\\2&-1&a\end{vmatrix}=(a+1)^2(a-2). \end{aligned} detA=a111a111ar2+r1 aa+111a+1110ac1c2 a1021a+1110a=(a+1)2(a2).
  于是当 a = − 1 a=-1 a=1 a = 2 a=2 a=2 d e t A = 0 \mathrm{det}\bm{A}=0 detA=0,即 R ( A ) < 3 R(\bm{A})<3 R(A)<3。由定理知此时向量组 a 1 , a 2 , a 3 \bm{a}_1,\bm{a}_2,\bm{a}_3 a1,a2,a3线性相关。(这道题主要利用了行列式和矩阵秩的关系求解

10.设 b 1 = a 1 , b 2 = a 1 + a 2 , ⋯ b r = a 1 + a 2 + ⋯ + a r \bm{b}_1=\bm{a}_1,\bm{b}_2=\bm{a}_1+\bm{a}_2,\cdots\bm{b}_r=\bm{a}_1+\bm{a}_2+\cdots+\bm{a}_r b1=a1,b2=a1+a2,br=a1+a2++ar,且向量组 a 1 , a 2 , ⋯   , a r \bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r a1,a2,,ar线性无关,证明向量组 b 1 , b 2 , ⋯   , b r \bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r b1,b2,,br线性无关。

  先把 b 1 , b 2 , ⋯   , b r \bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r b1,b2,,br a 1 , a 2 , ⋯   , a r \bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r a1,a2,,ar线性表示的关系式写成矩阵形式:
( b 1 , b 2 , ⋯   , b r ) = ( a 1 , a 2 , ⋯   , a r ) ( 1 ⋯ 1 ⋱ ⋮ 0 1 ) = ( a 1 , a 2 , ⋯   , a r ) K . (\bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r)=(\bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r)\begin{pmatrix}1&\cdots&1\\&\ddots&\vdots\\0&&1\end{pmatrix}=(\bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r)\bm{K}. (b1,b2,,br)=(a1,a2,,ar)1011=(a1,a2,,ar)K.
  因 d e t K = 1 \mathrm{det}\bm{K}=1 detK=1,故 K \bm{K} K是可逆矩阵,由矩阵秩的性质,知
R ( b 1 , b 2 , ⋯   , b r ) = R ( a 1 , a 2 , ⋯   , a r ) . R(\bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r)=R(\bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r). R(b1,b2,,br)=R(a1,a2,,ar).
  又因 a 1 , a 2 , ⋯   , a r \bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r a1,a2,,ar线性无关,由定理知 R ( a 1 , a 2 , ⋯   , a r ) = r R(\bm{a}_1,\bm{a}_2,\cdots,\bm{a}_r)=r R(a1,a2,,ar)=r,从而有 R ( b 1 , b 2 , ⋯   , b r ) = r R(\bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r)=r R(b1,b2,,br)=r。再次应用定理知向量组 b 1 , b 2 , ⋯   , b r \bm{b}_1,\bm{b}_2,\cdots,\bm{b}_r b1,b2,,br线性无关。(这道题主要利用了矩阵秩的性质求解

20.已知 3 3 3阶矩阵 A \bm{A} A 3 3 3维列向量 x \bm{x} x满足 A 3 x = 3 A x − A 2 x \bm{A}^3\bm{x}=3\bm{A}\bm{x}-\bm{A}^2\bm{x} A3x=3AxA2x,且向量组 x , A x , A 2 x \bm{x},\bm{Ax},\bm{A}^2\bm{x} x,Ax,A2x线性无关。

(1)记 y = A x , z = A y , P = ( x , y , z ) \bm{y}=\bm{Ax},\bm{z}=\bm{Ay},\bm{P}=(\bm{x},\bm{y},\bm{z}) y=Ax,z=Ay,P=(x,y,z),求 3 3 3阶矩阵 B B B,使 A P = P B \bm{AP}=\bm{PB} AP=PB

  由关系式知
A P = A ( x , y , z ) = ( A x , A y , A z ) . \bm{AP}=\bm{A}(\bm{x},\bm{y},\bm{z})=(\bm{Ax},\bm{Ay},\bm{Az}). AP=A(x,y,z)=(Ax,Ay,Az).
  因 A x = y , A y = z , A z = A 3 x = 3 A x − A 2 x = 3 y − z \bm{Ax}=\bm{y},\bm{Ay}=\bm{z},\bm{Az}=\bm{A}^3\bm{x}=3\bm{A}\bm{x}-\bm{A}^2\bm{x}=3\bm{y}-\bm{z} Ax=y,Ay=z,Az=A3x=3AxA2x=3yz,故
A P = ( y , z , 3 y − z ) = ( x , y , z ) ( 0 0 0 1 0 3 0 1 − 1 ) = P ( 0 0 0 1 0 3 0 1 − 1 ) . \begin{aligned} \bm{AP}&=(\bm{y},\bm{z},3\bm{y}-\bm{z})\\ &=(\bm{x},\bm{y},\bm{z})\begin{pmatrix}0&0&0\\1&0&3\\0&1&-1\end{pmatrix}=\bm{P}\begin{pmatrix}0&0&0\\1&0&3\\0&1&-1\end{pmatrix}. \end{aligned} AP=(y,z,3yz)=(x,y,z)010001031=P010001031.
  于是
B = P − 1 A P = ( 0 0 0 1 0 3 0 1 − 1 ) . \bm{B}=\bm{P}^{-1}\bm{AP}=\begin{pmatrix}0&0&0\\1&0&3\\0&1&-1\end{pmatrix}. B=P1AP=010001031.
这道题主要利用了凑整的方法求解

23.求一个齐次线性方程,使它的基础解系为 ξ 1 = ( 0 , 1 , 2 , 3 ) T , ξ 2 = ( 3 , 2 , 1 , 0 ) T . \bm{\xi}_1=(0,1,2,3)^{\mathrm{T}},\qquad\bm{\xi}_2=(3,2,1,0)^{\mathrm{T}}. ξ1=(0,1,2,3)T,ξ2=(3,2,1,0)T.

  设所求齐次线性方程为 A x = 0 . \bm{Ax}=\bm{0}. Ax=0.
  记 B = ( ξ 1 , ξ 2 ) \bm{B}=(\bm{\xi}_1,\bm{\xi}_2) B=(ξ1,ξ2),那么 A B = O \bm{AB}=\bm{O} AB=O A T \bm{A}^{\mathrm{T}} AT B T x = 0 \bm{B}^{\mathrm{T}}\bm{x}=\bm{0} BTx=0的一个基础解系。
  由 B T = ( 0 1 2 3 3 2 1 0 ) ∼ ( 0 1 2 3 1 0 − 1 − 2 ) \bm{B}^{\mathrm{T}}=\begin{pmatrix}0&1&2&3\\3&2&1&0\end{pmatrix}\sim\begin{pmatrix}0&1&2&3\\1&0&-1&-2\end{pmatrix} BT=(03122130)(01102132),得基础解系为 η 1 = ( 1 , − 2 , 1 , 0 ) T , η 2 = ( 2 , − 3 , 0 , 1 ) T . \bm{\eta}_1=(1,-2,1,0)^{\mathrm{T}},\qquad\bm{\eta}_2=(2,-3,0,1)^{\mathrm{T}}. η1=(1,2,1,0)T,η2=(2,3,0,1)T.
  故 A \bm{A} A可取为
A = ( η 1 T η 2 T ) = ( 1 − 2 1 0 2 − 3 0 1 ) . \bm{A}=\begin{pmatrix}\bm{\eta}_1^{\mathrm{T}}\\\bm{\eta}_2^{\mathrm{T}}\end{pmatrix}=\begin{pmatrix}1&-2&1&0\\2&-3&0&1\end{pmatrix}. A=(η1Tη2T)=(12231001).
  对应的齐次线性方程为
{ x 1 − 2 x 2 + x 3 = 0 , 2 x 1 − 3 x 2 + x 4 = 0. \begin{cases} x_1-2x_2+x_3=0,\\ 2x_1-3x_2+x_4=0. \end{cases} {x12x2+x3=0,2x13x2+x4=0.
这道题主要利用了构造方程组的方法求解

34.设非齐次线性方程组 A x = b \bm{Ax}=\bm{b} Ax=b的系数矩阵的秩为 r r r,向量 η 1 , ⋯   , η n − r + 1 \bm{\eta}_1,\cdots,\bm{\eta}_{n-r+1} η1,,ηnr+1是它的 n − r + 1 n-r+1 nr+1个线性无关的解。试证它的任一解可表示为 x = k 1 η 1 + ⋯ + k n − r + 1 η n − r + 1 ( 其中 k 1 + ⋯ + k n − r + 1 = 1 ) . \bm{x}=k_1\bm{\eta}_1+\cdots+k_{n-r+1}\bm{\eta}_{n-r+1}\quad(\text{其中}k_1+\cdots+k_{n-r+1}=1). x=k1η1++knr+1ηnr+1(其中k1++knr+1=1).

  设向量 β \bm{\beta} β是方程的任一解,记向量 ξ i = η i − η n − r + 1 , i = 1 , 2 , ⋯   , n − r \bm{\xi}_i=\bm{\eta}_i-\bm{\eta}_{n-r+1},i=1,2,\cdots,n-r ξi=ηiηnr+1,i=1,2,,nr,则 ξ i \bm{\xi}_i ξi是对应齐次方程的解,且 ξ 1 , ξ 2 , ⋯   , ξ n − r \bm{\xi}_1,\bm{\xi}_2,\cdots,\bm{\xi}_{n-r} ξ1,ξ2,,ξnr线性无关。由此可知,可 β \bm{\beta} β由它及 η n − r + 1 \bm{\eta}_{n-r+1} ηnr+1线性表示,即存在数 λ 1 , λ 2 , ⋯   , λ n − r \lambda_1,\lambda_2,\cdots,\lambda_{n-r} λ1,λ2,,λnr,使
β = λ 1 η 1 + ⋯ + λ n − r + 1 η n − r + 1 . \bm{\beta}=\lambda_1\bm{\eta}_1+\cdots+\lambda_{n-r+1}\bm{\eta}_{n-r+1}. β=λ1η1++λnr+1ηnr+1.
  上式中, λ n − r + 1 = 1 − λ 1 − ⋯ − λ n − r \lambda_{n-r+1}=1-\lambda_1-\cdots-\lambda_{n-r} λnr+1=1λ1λnr,即 λ 1 + λ 2 + ⋯ + λ n − r + 1 = 1 \lambda_1+\lambda_2+\cdots+\lambda_{n-r+1}=1 λ1+λ2++λnr+1=1。(这道题主要利用了构造的方法求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值