线性代数——矩阵

系列文章目录


版权声明

本文大部分内容皆来自李永乐老师考研教材和视频课。

五分钟记住公式

从矩阵的转置章节到方阵和行列式章节有大量重要的公式,本人亲测通过以下方法可以在五分钟之内全部记忆:

  • 摆正心态,此时此刻必须全部记住,不要往后拖。
  • 每一节公式顺序上有规律(不一定全有,并且后面章节对前面章节有不可见性):
    • ①最重要的公式
    • ②加法公式
    • ③数乘公式
    • ④乘法公式
    • ⑤转置公式
    • ⑥伴随公式
    • ⑦逆矩阵公式
    • ⑧其它公式
  • 默写一遍,记不住的看看推导过程。

基础概念

  • 矩阵:由 m × n m\times n m×n个数组成的 m m m n n n列的表格 A = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ] A=\begin{bmatrix}a_{11}&a_{12}&\ldots&a_{1n}\\a_{21}&a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{m1}&a_{m2}&\ldots&a_{mn}\end{bmatrix} A= a11a21am1a12a22am2a1na2namn
    称为一个 m × n m\times n m×n矩阵,当 m = n m=n m=n时,称 A A A n n n阶矩阵或 n n n阶方阵。
  • 同型矩阵:如果 A A A B B B都是 m × n m\times n m×n矩阵,那么称 A A A B B B同型矩阵
  • 相等矩阵:设 A , B A,B A,B是同型矩阵,如果 a i j = b i j ( ∀ i = 1 , 2 , … , m ; j = 1 , 2 , … , n ) a_{ij}=b_{ij}(\forall i=1,2,\dots,m;j=1,2,\dots,n) aij=bij(i=1,2,,m;j=1,2,,n),则称 A A A B B B相等,记作 A = B A=B A=B
  • 零矩阵:如果一个矩阵的所有元素都是 0 0 0,那么就称这个矩阵为零矩阵,记作 O O O
  • 对角矩阵: [ a 11 a 22 ⋱ a n n ] \begin{bmatrix} a_{11}&&\\ &a_{22}&\\ &&\ddots&\\ &&&a_{nn} \end{bmatrix} a11a22ann
  • 单位矩阵 E E E [ 1 1 ⋱ 1 ] \begin{bmatrix} 1&&\\ &1&\\ &&\ddots&\\ &&&1 \end{bmatrix} 111
    • E T = E E^T=E ET=E
    • E ∗ = E E^*=E E=E
    • E − 1 = E E^{-1}=E E1=E
  • 上三角矩阵: [ a 11 a 12 … a 1 n a 22 … a 2 n ⋱ ⋮ a n n ] \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ &a_{22}&\dots&a_{2n}\\ &&\ddots&\vdots\\ &&&a_{nn} \end{bmatrix} a11a12a22a1na2nann i > j i>j i>j时, a i j = 0 a_{ij}=0 aij=0
  • 下三角矩阵: [ a 11 a 21 a 22 ⋮ ⋮ ⋱ a n 1 a n 2 … a n n ] \begin{bmatrix} a_{11}&&&\\ a_{21}&a_{22}&&\\ \vdots&\vdots&\ddots&\\ a_{n1}&a_{n2}&\dots&a_{nn} \end{bmatrix} a11a21an1a22an2ann i < j i<j i<j时, a i j = 0 a_{ij}=0 aij=0

矩阵的运算

矩阵的加法

A = [ a i j ] , B = [ b i j ] A=[a_{ij}],B=[b_{ij}] A=[aij],B=[bij]为同型矩阵,那么
A + B = [ a i j + b i j ] A+B=[a_{ij}+b_{ij}] A+B=[aij+bij]
加法运算法则( A , B , C A,B,C A,B,C同型):

  • A + B = B + A A+B=B+A A+B=B+A
  • ( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)
  • A + O = A A+O=A A+O=A
  • A + ( − A ) = O A+(-A)=O A+(A)=O

数与矩阵相乘

k A = [ k a i j ] kA=[ka_{ij}] kA=[kaij]
数乘运算法则:

  • k ( m A ) = m ( k A ) = ( m k ) A k(mA)=m(kA)=(mk)A k(mA)=m(kA)=(mk)A
  • ( k + m ) A = k A + m A (k+m)A=kA+mA (k+m)A=kA+mA
  • k ( A + B ) = k A + k B k(A+B)=kA+kB k(A+B)=kA+kB
  • 1 A = A 1A=A 1A=A
  • 0 A = O 0A=O 0A=O

矩阵的乘法

A = [ a i j ] m × s , B = [ b i j ] s × n A=[a_{ij}]_{m\times s},B=[b_{ij}]_{s\times n} A=[aij]m×s,B=[bij]s×n,则 A × B = C = [ c i j ] m × n A\times B=C=[c_{ij}]_{m\times n} A×B=C=[cij]m×n其中 c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i s b s j = ∑ k = 1 n a i k b k j c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\dots+a_{is}b_{sj}=\sum_{k=1}^na_{ik}b_{kj} cij=ai1b1j+ai2b2j++aisbsj=k=1naikbkj
乘法运算法则:

  • A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C
    证明:设 A = [ a i j ] m × s A=[a_{ij}]_{m\times s} A=[aij]m×s B = [ b i j ] s × t B=[b_{ij}]_{s\times t} B=[bij]s×t C = [ c i j ] t × n C=[c_{ij}]_{t\times n} C=[cij]t×n
    A ( B C ) = D m × n ( A B ) C = E m × n A(BC)=D_{m\times n}\\(AB)C=E_{m\times n} A(BC)=Dm×n(AB)C=Em×n
    D D D中第 i i i行第 j j j列的元素等于 A A A i i i行与 B C BC BC j j j列对应元素相乘再相加:
    ∑ k = 1 s a i k ( ∑ p = 1 t b k p c p j ) = ∑ k = 1 s ∑ p = 1 t a i k b k p c p j \sum_{k=1}^sa_{ik}(\sum_{p=1}^tb_{kp}c_{pj})=\sum_{k=1}^s\sum_{p=1}^ta_{ik}b_{kp}c_{pj} k=1saik(p=1tbkpcpj)=k=1sp=1taikbkpcpj
    同理 E E E中第 i i i行第 j j j列的元素等于:
    ∑ p = 1 t ( ∑ k = 1 s a i k b k p ) c p j = ∑ k = 1 s ∑ p = 1 t a i k b k p c p j \sum_{p=1}^t(\sum_{k=1}^sa_{ik}b_{kp})c_{pj}=\sum_{k=1}^s\sum_{p=1}^ta_{ik}b_{kp}c_{pj} p=1t(k=1saikbkp)cpj=k=1sp=1taikbkpcpj
  • A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
  • ( k A ) ( l B ) = k l A B (kA)(lB)=klAB (kA)(lB)=klAB
  • A E = A , E A = A AE=A,EA=A AE=A,EA=A
  • O A = O , A O = O OA=O,AO=O OA=O,AO=O

注意:

  • A B ≠ B A AB\neq BA AB=BA
  • ( A + B ) 2 ≠ A 2 + 2 A B + B 2 (A+B)^2\neq A^2+2AB+B^2 (A+B)2=A2+2AB+B2
  • ( A + E ) 2 = A 2 + 2 A + E (A+E)^2= A^2+2A+E (A+E)2=A2+2A+E
  • A B = O ⇏ A = O AB=O\nRightarrow A=O AB=OA=O B = O B=O B=O
  • A B = A C , A ≠ O ⇏ B = C AB=AC,A\neq O \nRightarrow B=C AB=AC,A=OB=C
  • A , B A,B A,B是对角矩阵,则 A B = B A AB=BA AB=BA

几个特殊的向量乘法

α , β \alpha,\beta α,β为两个列向量,则:

  • r ( α β T ) = 1 r(\alpha\beta^T)=1 r(αβT)=1
  • α T β = t r ( α β T ) \alpha^T\beta=tr(\alpha\beta^T) αTβ=tr(αβT)
  • r ( α α T ) = 1 r(\alpha\alpha^T)=1 r(ααT)=1 α α T \alpha\alpha^T ααT是一个对称矩阵
  • α T α = t r ( α α T ) \alpha^T\alpha=tr(\alpha\alpha^T) αTα=tr(ααT)

A n A^n An的计算方法

计算 A n A^n An的方法如下:

  • [ a 1 a 2 a 3 ] n = [ a 1 n a 2 n a 3 n ] \begin{bmatrix}a_1&&\\&a_2&\\&&a_3\end{bmatrix}^n=\begin{bmatrix}a_1^n&&\\&a_2^n&\\&&a_3^n\end{bmatrix} a1a2a3 n= a1na2na3n
  • r ( A ) = 1 r(A)=1 r(A)=1,则 A A A可分解为一个列向量和一个行向量的乘积,且有
    A n = [ t r ( A ) ] n − 1 A A^n=[tr(A)]^{n-1}A An=[tr(A)]n1A
  • A ∼ B A\thicksim B AB,则 A n = P B n P − 1 A^n=PB^nP^{-1} An=PBnP1
  • A = k E + B A=kE+B A=kE+B,则
    A n = ( k E ) n + n ( k E ) n − 1 B + C n 2 ( k E ) n − 2 B 2 + C n 3 ( k E ) n − 3 B 3 + … A^n=(kE)^n+n(kE)^{n-1}B+C_n^2(kE)^{n-2}B^2+C_n^3(kE)^{n-3}B^3+\dots An=(kE)n+n(kE)n1B+Cn2(kE)n2B2+Cn3(kE)n3B3+

矩阵的转置

A = [ a i j ] m × n A=[a_{ij}]_{m\times n} A=[aij]m×n,将 A A A的行列互换,得到的 n × m n\times m n×m矩阵 [ a j i ] n × m [a_{ji}]_{n\times m} [aji]n×m称为 A A A的转置矩阵,记为 A T A^T AT A T = A A^T=A AT=A,则称 A A A对称矩阵,若 A T = − A A^T=-A AT=A,则称 A A A反对称矩阵。转置运算法则如下:

  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
    证明:设 A = [ a i j ] m × n , B = [ b i j ] m × n A=[a_{ij}]_{m\times n},B=[b_{ij}]_{m\times n} A=[aij]m×n,B=[bij]m×n,则:
    ( A + B ) T = [ a i j + b i j ] m × n T = [ a j i + b j i ] n × m A T + B T = [ a i j ] m × n T + [ b i j ] m × n T = [ a j i ] n × m + [ b j i ] n × m = [ a j i + b j i ] n × m (A+B)^T=[a_{ij}+b_{ij}]_{m\times n}^T=[a_{ji}+b_{ji}]_{n\times m}\\A^T+B^T=[a_{ij}]_{m\times n}^T+[b_{ij}]_{m\times n}^T=[a_{ji}]_{n\times m}+[b_{ji}]_{n\times m}=[a_{ji}+b_{ji}]_{n\times m} (A+B)T=[aij+bij]m×nT=[aji+bji]n×mAT+BT=[aij]m×nT+[bij]m×nT=[aji]n×m+[bji]n×m=[aji+bji]n×m
  • ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
    证明:设 A = [ a i j ] m × n A=[a_{ij}]_{m\times n} A=[aij]m×n,则:
    ( k A ) T = [ k a i j ] m × n T = [ k a j i ] n × m k A T = k [ a i j ] m × n T = [ k a j i ] n × m (kA)^T=[ka_{ij}]_{m\times n}^T=[ka_{ji}]_{n\times m}\\kA^T=k[a_{ij}]_{m\times n}^T=[ka_{ji}]_{n\times m} (kA)T=[kaij]m×nT=[kaji]n×mkAT=k[aij]m×nT=[kaji]n×m
  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
    证明:设 A = [ a i j ] m × s , B = [ b i j ] s × n A=[a_{ij}]_{m\times s},B=[b_{ij}]_{s\times n} A=[aij]m×s,B=[bij]s×n,则有:
    A B = [ c i j ] m × n ⇓ ( A B ) T = [ c j i ] n × m AB=[c_{ij}]_{m\times n}\\ \Downarrow\\ (AB)^T=[c_{ji}]_{n\times m}\\ AB=[cij]m×n(AB)T=[cji]n×m
    其中
    c j i = ∑ k = 1 s a i k b k j c_{ji}=\sum_{k=1}^sa_{ik}b_{kj} cji=k=1saikbkj

    B T A T = [ d i j ] n × m B^TA^T=[d_{ij}]_{n\times m} BTAT=[dij]n×m
    B T A T B^TA^T BTAT j j j i i i列元素是 B T B^T BT j j j行与 A T A^T AT i i i列所得,也是 B B B j j j列与 A A A i i i行所得,因此:
    d j i = ∑ k = 1 s b k j a i k = c j i d_{ji}=\sum_{k=1}^sb_{kj}a_{ik}=c_{ji} dji=k=1sbkjaik=cji
  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • A A T = O AA^T=O AAT=O,则 A = O A=O A=O
    证明:设 A = [ a 11 a 12 a 21 a 22 ] A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix} A=[a11a21a12a22],则 O 11 = a 11 a 11 + a 12 a 12 = 0 ⇓ a 11 = 0 , a 12 = 0 O_{11}=a_{11}a_{11}+a_{12}a_{12}=0\\\Downarrow\\ a_{11}=0,a_{12}=0 O11=a11a11+a12a12=0a11=0,a12=0
    同理可得 a 21 = 0 , a 22 = 0 a_{21}=0,a_{22}=0 a21=0,a22=0,所以 A = O A=O A=O

伴随矩阵

A = [ a i j ] A=[a_{ij}] A=[aij] n n n阶方阵,行列式 ∣ A ∣ |A| A的每个元素 a i j a_{ij} aij的代数余子式 A i j A_{ij} Aij所构成的如下方阵称为 A A A伴随矩阵 A ∗ = [ A 11 A 21 … A n 1 A 12 A 22 … A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n … A n n ] A^*=\begin{bmatrix}A_{11}&A_{21}&\dots&A_{n1}\\A_{12}&A_{22}&\dots&A_{n2}\\\vdots&\vdots&&\vdots\\A_{1n}&A_{2n}&\dots&A_{nn}\end{bmatrix} A= A11A12A1nA21A22A2nAn1An2Ann 伴随矩阵的性质:

  • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
    证明:设 A A A n n n阶矩阵(以 n = 2 n=2 n=2)为例:
    A A ∗ = [ a 11 a 12 a 21 a 22 ] [ A 11 A 21 A 12 A 22 ] = [ a 11 A 11 + a 12 A 12 a 11 A 21 + a 12 A 22 a 21 A 11 + a 22 A 12 a 21 A 21 + a 22 A 22 ] = [ ∣ A ∣ O O ∣ A ∣ ] = ∣ A ∣ [ 1 0 0 1 ] = ∣ A ∣ E AA^* = \begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{bmatrix} \begin{bmatrix} A_{11}&A_{21}\\ A_{12}&A_{22} \end{bmatrix} = \begin{bmatrix} a_{11}A_{11}+a_{12}A_{12}&a_{11}A_{21}+a_{12}A_{22}\\ a_{21}A_{11}+a_{22}A_{12}&a_{21}A_{21}+a_{22}A_{22} \end{bmatrix} = \begin{bmatrix} |A|&O\\ O&|A| \end{bmatrix} =|A| \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} =|A|E AA=[a11a21a12a22][A11A12A21A22]=[a11A11+a12A12a21A11+a22A12a11A21+a12A22a21A21+a22A22]=[AOOA]=A[1001]=AE
  • 如果 A A A可逆,则 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1
  • 如果 A A A可逆,则 ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A
    证明:
    ( k A ) ∗ = ∣ k A ∣ ( k A ) − 1 = k n ∣ A ∣ 1 k A − 1 = k n − 1 A ∗ (kA)^{*}=|kA|(kA)^{-1}=k^{n}|A|\frac{1}{k}A^{-1}=k^{n-1}A^* (kA)=kA(kA)1=knAk1A1=kn1A
  • 如果 A A A可逆,则 ( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A)T=(AT)
    证明:
    ( A ∗ ) T = ( ∣ A ∣ A − 1 ) T = ∣ A T ∣ ( A T ) − 1 = ( A T ) ∗ (A^*)^T=(|A|A^{-1})^T=|A^T|(A^T)^{-1}=(A^T)^* (A)T=(AA1)T=AT(AT)1=(AT)
  • 如果 A A A可逆,则 ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A
    证明:
    ( A ∗ ) ∗ = ( ∣ A ∣ A − 1 ) ∗ = ∣ A ∣ n − 1 ( A − 1 ) ∗ = ∣ A ∣ n − 1 ∣ A ∣ − 1 A = ∣ A ∣ n − 2 A (A^*)^*=(|A|A^{-1})^*=|A|^{n-1}(A^{-1})^*=|A|^{n-1}|A|^{-1}A=|A|^{n-2}A (A)=(AA1)=An1(A1)=An1A1A=An2A
  • 二阶矩阵的伴随矩阵:主对角线互换,副对角线变号。

可逆矩阵

对于 n n n阶方阵 A A A,如果存在 n n n阶方阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E则称 A A A可逆矩阵非奇异矩阵,矩阵 B B B A A A逆矩阵。如果矩阵 A A A是可逆的,那么 A A A的逆矩阵是唯一的,记作 A − 1 A^{-1} A1可逆矩阵的性质如下:

  • A , B A,B A,B n n n阶方阵,如果 A B = E AB=E AB=E,则 A − 1 = B A^{-1}=B A1=B
  • A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
    证明:
    ∵ A A ∗ = ∣ A ∣ E ∴ A A ∗ ∣ A ∣ = E = A A − 1 ∴ A − 1 = 1 ∣ A ∣ A ∗ \because AA^*=|A|E\\ \therefore A\frac{A^*}{|A|}=E=AA^{-1}\\ \therefore A^{-1}=\frac{1}{|A|}A^* AA=AEAAA=E=AA1A1=A1A
  • ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1
    证明:
    ∵ k A A − 1 1 k = k E 1 k = E ∴ ( k A ) − 1 = 1 k A − 1 \because kAA^{-1}\frac{1}{k}=kE\frac{1}{k}=E\\ \therefore(kA)^{-1}=\frac{1}{k}A^{-1} kAA1k1=kEk1=E(kA)1=k1A1
  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
    证明:
    ∵ A B B − 1 A − 1 = A E A − 1 = E ∴ ( A B ) − 1 = B − 1 A − 1 \because ABB^{-1}A^{-1}=AEA^{-1}=E\\ \therefore(AB)^{-1}=B^{-1}A^{-1} ABB1A1=AEA1=E(AB)1=B1A1
  • ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
    证明:
    ( A T ) − 1 = ( A T ) ∗ ∣ A T ∣ = ( A ∗ ) T ∣ A T ∣ = ( A ∗ ∣ A ∣ ) T = ( A − 1 ) T (A^T)^{-1}=\frac{(A^T)^*}{|A^T|}=\frac{(A^*)^T}{|A^T|}=(\frac{A^*}{|A|})^{T}=(A^{-1})^T (AT)1=AT(AT)=AT(A)T=(AA)T=(A1)T
  • ( A − 1 ) ∗ = ( A ∗ ) − 1 = A ∣ A ∣ (A^{-1})^*=(A^*)^{-1}=\frac{A}{|A|} (A1)=(A)1=AA
    证明:
    ( A − 1 ) ∗ = ( A − 1 ) ∗ A − 1 A = ∣ A − 1 ∣ E A = A ∣ A ∣ ( A ∗ ) − 1 = ( A − 1 ∣ A ∣ ) − 1 = A ∣ A ∣ (A^{-1})^*=(A^{-1})^*A^{-1}A=|A^{-1}|EA=\frac{A}{|A|}\\ (A^*)^{-1}=(A^{-1}|A|)^{-1}=\frac{A}{|A|} (A1)=(A1)A1A=A1EA=AA(A)1=(A1A)1=AA
  • ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
    证明:令 B = A − 1 B=A^{-1} B=A1
    那么: B A = A B = E BA=AB=E BA=AB=E
    所以 B B B可逆且 B − 1 = ( A − 1 ) − 1 = A B^{-1}=(A^{-1})^{-1}=A B1=(A1)1=A
  • 如果 A = [ a 1 a 2 a 3 ] A=\begin{bmatrix}a_1&&\\&a_2&\\&&a_3\end{bmatrix} A= a1a2a3 是对角矩阵,则 A − 1 = [ 1 a 1 1 a 2 1 a 3 ] A^{-1}=\begin{bmatrix}\frac{1}{a_1}&&\\&\frac{1}{a_2}&\\&&\frac{1}{a_3}\end{bmatrix} A1= a11a21a31
  • A A A可逆
    ⇔ ∣ A ∣ ≠ 0 \Leftrightarrow|A|\neq0 A=0
    ⇔ A \Leftrightarrow A A的列(行)向量组线性无关
    ⇔ A = P 1 P 2 … P n , P i ( i = 1 , 2 , … , n ) \Leftrightarrow A=P_1P_2\dots P_n,P_i(i=1,2,\dots,n) A=P1P2Pn,Pi(i=1,2,,n)为初等矩阵
    ⇔ A ≅ E \Leftrightarrow A\cong E AE
    ⇔ 0 \Leftrightarrow 0 0不是矩阵 A A A的特征值

正交矩阵

A A A n n n阶矩阵,满足
A A T = A T A = E AA^T=A^TA=E AAT=ATA=E
则称 A A A正交矩阵。正交矩阵的性质如下:

  • A A A是正交矩阵
    ⇔ A T = A − 1 \Leftrightarrow A^T=A^{-1} AT=A1
    ⇔ A \Leftrightarrow A A的列向量和行向量都是单位向量且两两正交
  • 如果 A A A是正交矩阵,则 ∣ A ∣ = 1 |A|=1 A=1 − 1 -1 1
    证明:
    A A T = E ∣ A A T ∣ = ∣ E ∣ ∣ A ∣ ∣ A T ∣ = 1 ∣ A ∣ 2 = 1 AA^T=E\\ |AA^T|=|E|\\ |A||A^T|=1\\ |A|^2=1 AAT=EAAT=EA∣∣AT=1A2=1
  • A , B A,B A,B都是正交矩阵,则 A B AB AB也是正交矩阵。
    证明:
    ( A B ) ( A B ) T = A B B T A T = A E A T = E (AB)(AB)^T=ABB^TA^T=AEA^T=E\\ (AB)(AB)T=ABBTAT=AEAT=E

方阵和行列式

A = [ a i j ] A=[a_{ij}] A=[aij] n n n阶方阵,其所有元素保持位置不动所构成的行列式称为方阵 A A A的行列式,记为 ∣ A ∣ |A| A注意:

  • 仅有方阵才有行列式。
  • A = O A=O A=O ∣ A ∣ = 0 |A|=0 A=0没有必然关系。

方阵行列式的性质:

  • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
    证明:设 A A A n n n阶矩阵(以 n = 2 n=2 n=2)为例:
    A = [ a 11 a 12 a 21 a 22 ] A= \begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{bmatrix} A=[a11a21a12a22]
    则:
    ∣ k A ∣ = ∣ k a 11 k a 12 k a 21 k a 22 ∣ = k 2 ∣ a 11 a 12 a 21 a 22 ∣ = k 2 ∣ A ∣ |kA|= \begin{vmatrix} ka_{11}&ka_{12}\\ ka_{21}&ka_{22} \end{vmatrix} =k^2 \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{vmatrix} =k^2|A| kA= ka11ka21ka12ka22 =k2 a11a21a12a22 =k2A
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
    证明:设 A A A B B B n n n阶矩阵(以 n = 2 n=2 n=2)为例:
    A = [ a 11 a 12 a 21 a 22 ] B = [ b 11 b 12 b 21 b 22 ] A= \begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{bmatrix} B= \begin{bmatrix} b_{11}&b_{12}\\ b_{21}&b_{22} \end{bmatrix} A=[a11a21a12a22]B=[b11b21b12b22]
    构成四阶行列式 D D D
    D = ∣ A ∣ ∣ B ∣ = ∣ A O − E B ∣ = ∣ a 11 a 12 0 0 a 21 a 22 0 0 − 1 0 b 11 b 12 0 − 1 b 21 b 22 ∣ = ∣ a 11 a 12 a 11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 a 22 a 21 b 11 + a 22 b 21 a 21 b 12 + a 22 b 22 − 1 0 0 0 0 − 1 0 0 ∣ = ∣ A A B − E O ∣ = − 1 ( 2 × 2 ) ∣ − E ∣ ∣ A B ∣ = ∣ A B ∣ D =|A||B| = \begin{vmatrix} A&O\\ -E&B \end{vmatrix} = \begin{vmatrix} a_{11}&a_{12}&0&0\\ a_{21}&a_{22}&0&0\\ -1&0&b_{11}&b_{12}\\ 0&-1&b_{21}&b_{22} \end{vmatrix} = \begin{vmatrix} a_{11}&a_{12}&a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\ a_{21}&a_{22}&a_{21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\\ -1&0&0&0\\ 0&-1&0&0 \end{vmatrix} = \begin{vmatrix} A&AB\\ -E&O \end{vmatrix} =-1^{(2\times2)}|-E||AB| =|AB| D=A∣∣B= AEOB = a11a2110a12a220100b11b2100b12b22 = a11a2110a12a2201a11b11+a12b21a21b11+a22b2100a11b12+a12b22a21b12+a22b2200 = AEABO =1(2×2)E∣∣AB=AB
  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
    证明:设 A A A n n n阶矩阵(以 n = 2 n=2 n=2)为例:
    A = [ a 11 a 12 a 21 a 22 ] A= \begin{bmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{bmatrix} A=[a11a21a12a22]
    则:
    ∣ A T ∣ = ∣ a 11 a 21 a 12 a 22 ∣ = a 11 a 22 − a 21 a 12 |A^T|= \begin{vmatrix} a_{11}&a_{21}\\ a_{12}&a_{22} \end{vmatrix} =a_{11}a_{22}-a_{21}a_{12} AT= a11a12a21a22 =a11a22a21a12
    ∣ A ∣ = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = ∣ A T ∣ |A|= \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{vmatrix} =a_{11}a_{22}-a_{12}a_{21}=|A^T| A= a11a21a12a22 =a11a22a12a21=AT
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
    证明:
    ∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n ∣ A ∣ − 1 = ∣ A ∣ n − 1 |A^*|=||A|A^{-1}|=|A|^n|A|^{-1}=|A|^{n-1} A=∣∣AA1=AnA1=An1
  • ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1
    证明:
    ∣ A − 1 ∣ = ( 1 ∣ A ∣ A ∗ ) − 1 = ∣ A ∣ − n ∣ A ∣ n − 1 = 1 ∣ A ∣ |A^{-1}|=(\frac{1}{|A|}A^*)^{-1}=|A|^{-n}|A|^{n-1}=\frac{1}{|A|} A1=(A1A)1=AnAn1=A1
  • 奇数阶的反对称矩阵其行列式为零。

分块矩阵

对矩阵适当的进行分块处理,可以有效地进行计算,分块后有如下运算法则:

  • [ A 1 A 2 A 3 A 4 ] + [ B 1 B 2 B 3 B 4 ] = [ A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ] \begin{bmatrix}A_1&A_2\\A_3&A_4\end{bmatrix}+\begin{bmatrix}B_1&B_2\\B_3&B_4\end{bmatrix}=\begin{bmatrix}A_1+B_1&A_2+B_2\\A_3+B_3&A_4+B_4\end{bmatrix} [A1A3A2A4]+[B1B3B2B4]=[A1+B1A3+B3A2+B2A4+B4]
  • [ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] \begin{bmatrix}A&B\\C&D\end{bmatrix}\begin{bmatrix}X&Y\\Z&W\end{bmatrix}=\begin{bmatrix}AX+BZ&AY+BW\\CX+DZ&CY+DW\end{bmatrix} [ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]
  • [ A B C D ] T = [ A T C T B T D T ] \begin{bmatrix}A&B\\C&D\end{bmatrix}^T=\begin{bmatrix}A^T&C^T\\B^T&D^T\end{bmatrix} [ACBD]T=[ATBTCTDT]

A , B A,B A,B分别为 m , s m,s m,s阶方阵,则:

  • [ A O O B ] n = [ A n O O B n ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^n=\begin{bmatrix}A^n&O\\O&B^n\end{bmatrix} [AOOB]n=[AnOOBn]

A , B A,B A,B分别为 m , n m,n m,n阶可逆矩阵,则:

  • [ A O O B ] − 1 = [ A − 1 O O B − 1 ] \begin{bmatrix}A&O\\O&B\end{bmatrix}^{-1}=\begin{bmatrix}A^{-1}&O\\O&B^{-1}\end{bmatrix} [AOOB]1=[A1OOB1]
  • [ O A B O ] − 1 = [ O B − 1 A − 1 O ] \begin{bmatrix}O&A\\B&O\end{bmatrix}^{-1}=\begin{bmatrix}O&B^{-1}\\A^{-1}&O\end{bmatrix} [OBAO]1=[OA1B1O]

A B = C AB=C AB=C,对 B B B C C C按列分块有:
A [ b 1 , b 2 , … , b n ] = [ γ 1 , γ 2 , … , γ 3 ] ⇓ A b i = γ i A[b_1,b_2,\dots,b_n]=[\gamma_1,\gamma_2,\dots,\gamma_3]\\ \Downarrow\\ Ab_i=\gamma_i A[b1,b2,,bn]=[γ1,γ2,,γ3]Abi=γi
B B B的列向量是 A x = γ i Ax=\gamma_i Ax=γi的解;对 B B B C C C按行分块有:
[ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 … a m n ] [ β 1 β 2 ⋮ β n ] = [ γ 1 γ 2 ⋮ γ n ] \begin{bmatrix} a_{11}&a_{12}&\dots&a_{1n}\\ a_{21}&a_{22}&\dots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\dots&a_{mn} \end{bmatrix} \begin{bmatrix} \beta_1\\\beta_2\\\vdots\\\beta_n \end{bmatrix} {=} \begin{bmatrix} \gamma_1\\\gamma_2\\\vdots\\\gamma_n \end{bmatrix} a11a21am1a12a22am2a1na2namn β1β2βn = γ1γ2γn
即矩阵 C C C的行向量可由 B B B的行向量线性表示。对 A A A C C C按列分块有
[ α 1 , α 2 , … , α n ] [ b 11 b 12 … b 1 n b 21 b 22 … b 2 n ⋮ ⋮ ⋮ b m 1 b m 2 … b m n ] = [ γ 1 , γ 2 , … , γ n ] [\alpha_1,\alpha_2,\dots,\alpha_n] \begin{bmatrix} b_{11}&b_{12}&\dots&b_{1n}\\ b_{21}&b_{22}&\dots&b_{2n}\\ \vdots&\vdots&&\vdots\\ b_{m1}&b_{m2}&\dots&b_{mn} \end{bmatrix} {=} \begin{bmatrix} \gamma_1,\gamma_2,\dots,\gamma_n \end{bmatrix} [α1,α2,,αn] b11b21bm1b12b22bm2b1nb2nbmn =[γ1,γ2,,γn]
即矩阵 C C C的列向量可由 A A A的列向量表示。

矩阵的初等变换

以下三种变换称为矩阵的初等行(列)变换,统称为矩阵的初等变换:

  • 用非零的常数乘矩阵的某一行(列)。
  • 交换矩阵中两行(列)的位置。
  • 将一行(列)的 k k k倍加至另一行(列)。

注意:

  • 前两种变换方阵的行列式值可能改变,最后一种变换方阵的行列式不变。

使用初等变换的时机

初等行列变换均可使用:

  • 求矩阵的秩
  • 矩阵化为行阶梯和行最简

只能使用初等行变换:

  • 解线性方程组
  • 求特征向量
  • 求列向量的极大线性无关组

初等矩阵

单位矩阵经过一次初等变换得到的矩阵称为初等矩阵。初等矩阵的性质如下:

  • 初等矩阵 P P P左乘 A A A所得到的 P A PA PA就是对 A A A做一次与 P P P同样的初等行变换。
  • 初等矩阵 P P P右乘 A A A所得到的 A P AP AP就是对 A A A做一次与 P P P同样的初等列变换。
  • 初等矩阵均可逆,且其逆矩阵都是同类型的初等矩阵。
  • [ 1 0 0 0 1 0 0 k 1 ] − 1 = [ 1 0 0 0 1 0 0 − k 1 ] \begin{bmatrix}1&0&0\\0&1&0\\0&k&1\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&1&0\\0&-k&1\end{bmatrix} 10001k001 1= 10001k001
  • [ 1 0 0 0 0 1 0 1 0 ] − 1 = [ 1 0 0 0 0 1 0 1 0 ] \begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix} 100001010 1= 100001010
  • [ 1 0 0 0 k 0 0 0 1 ] − 1 = [ 1 0 0 0 1 k 0 0 0 1 ] \begin{bmatrix}1&0&0\\0&k&0\\0&0&1\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0\\0&\frac{1}{k}&0\\0&0&1\end{bmatrix} 1000k0001 1= 1000k10001

等价矩阵

如果矩阵 A A A经过有限次初等变换变成矩阵 B B B,就称矩阵 A A A B B B等价,记作 A ≅ B A\cong B AB。矩阵等价的性质如下:

  • 反身性: A ≅ A A\cong A AA
  • 对称性:若 A ≅ B A\cong B AB,则 B ≅ A B\cong A BA
  • 传递性:若 A ≅ B , B ≅ C A\cong B,B\cong C AB,BC,则 A ≅ C A\cong C AC
  • A ≅ B A\cong B AB
    ⇔ P A Q = B \Leftrightarrow PAQ=B PAQ=B,其中 P , Q P,Q P,Q为可逆矩阵
    ⇔ r ( A ) = r ( B ) \Leftrightarrow r(A)=r(B) r(A)=r(B)

行阶梯矩阵

A A A是一个 m × n m\times n m×n的矩阵,如果满足:

  • 如果矩阵有零行,则零行都在矩阵的底部。
  • 每个非零行的矩阵的主元(即某一行中最左边的第一个非零元)所在的列的下面元素都是 0 0 0

则称 A A A为行阶梯矩阵。

行最简矩阵

A A A是一个 m × n m\times n m×n的矩阵,如果满足:

  • A A A是行阶梯矩阵。
  • 非零行的主元都是 1 1 1,且主元所在列的其它元素都是 0 0 0

则称 A A A为行最简矩阵。

初等变换在矩阵求解中的应用

  • 通过初等行变换求解矩阵的逆矩阵: A A A矩阵可逆 ⇔ \Leftrightarrow A A A可以表示为若干个初等矩阵的乘积。即
    P n … P 2 P 1 = A P_n\dots P_2P_1=A PnP2P1=A
    那么
    ( P n … P 2 P 1 ) − 1 A = E (P_n\dots P_2P_1)^{-1}A=E (PnP2P1)1A=E
    因为 ( P n … P 2 P 1 ) − 1 = P 1 − 1 P 2 − 1 … P n − 1 = Q 1 Q 2 … Q n (P_n\dots P_2P_1)^{-1}=P_1^{-1} P_2^{-1}\dots P_n^{-1}=Q_1Q_2\dots Q_n (PnP2P1)1=P11P21Pn1=Q1Q2Qn Q Q Q仍为初等矩阵),所以原式可写为:
    Q 1 Q 2 … Q n A = E Q_1Q_2\dots Q_nA=E Q1Q2QnA=E
    那么
    Q 1 Q 2 … Q n E = A − 1 Q_1Q_2\dots Q_nE=A^{-1} Q1Q2QnE=A1
    因此: A A A矩阵经过若干次行变换可变为单位矩阵,单位矩阵经过若干次同样的行变换可变为 A A A的逆矩阵,即:
    ( A ∣ E ) → ⋯ → ( E ∣ A − 1 ) (A|E)\rightarrow\dots\rightarrow(E|A^{-1}) (AE)(EA1)
  • 通过初等行变换求解矩阵方程:若 A X = B AX=B AX=B,如果 A A A可逆,那么 X = A − 1 B X=A^{-1}B X=A1B P A = E PA=E PA=E那么 P B = A − 1 B = X PB=A^{-1}B=X PB=A1B=X所以 P ( A ∣ B ) = ( E ∣ X ) P(A|B)=(E|X) P(AB)=(EX)

矩阵的秩

m × n m\times n m×n阶的矩阵 A A A中,任取 k k k行与 k k k列( k ≤ n , k ≤ m k≤n,k≤m kn,km),位于这些行与列的交叉点上的 k 2 k^2 k2个元素按其在原来矩阵 A A A的次序可构成一个 k k k阶行列式,称其为矩阵 A A A的一个 k k k阶子式。若矩阵 A A A中存在 k k k阶子式不为 0 0 0 k + 1 k+1 k+1阶子式(如果存在)全为 0 0 0,则称 k k k为矩阵 A A A,记为 r ( A ) = k r(A)=k r(A)=k零矩阵的秩规定为 0 0 0。秩的性质如下:

  • 经过初等变换矩阵的秩不变。
  • r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A)(k\neq0) r(kA)=r(A)(k=0)
  • r ( A T ) = r ( A ) r(A^T)=r(A) r(AT)=r(A)
    证明:设 r ( A ) = r r(A)=r r(A)=r,则 A A A的列向量组的秩为 r r r A A A的列向量组就是 A T A^T AT的行向量组,所以 r ( A T ) = r = r ( A ) r(A^T)=r=r(A) r(AT)=r=r(A)
  • r ( A T A ) = r ( A A T ) = r ( A ) r(A^TA)=r(AA^T)=r(A) r(ATA)=r(AAT)=r(A)
    证明:设 A T A x = O A^TAx=O ATAx=O,则
    x T A T A = O ( A x ) T A x = O ⇓ A x = O x^TA^TA=O\\ (Ax)^TAx=O\\ \Downarrow\\ Ax=O\\ xTATA=O(Ax)TAx=OAx=O
    所以 A T A x = O A^TAx=O ATAx=O A x = O Ax=O Ax=O同解,所以 r ( A T A ) = r ( A ) r(A^TA)=r(A) r(ATA)=r(A),同理可得 r ( A A T ) = r ( A ) r(AA^T)=r(A) r(AAT)=r(A)
  • r ( A ∗ ) = x = { n 如果  r ( A ) = n 1 如果  r ( A ) = n − 1 0 如果  r ( A ) < n − 1 r(A^*)=x = \begin{cases} n &\text{如果 } r(A)=n \\ 1 &\text{如果 } r(A)=n-1 \\ 0 &\text{如果 } r(A)<n-1 \end{cases} r(A)=x= n10如果 r(A)=n如果 r(A)=n1如果 r(A)<n1
    证明:
    r ( A ) = n r(A)=n r(A)=n,又因 ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1,所以 ∣ A ∗ ∣ ≠ 0 , r ( A ∗ ) = n |A^*|\neq 0,r(A^*)=n A=0,r(A)=n
    r ( A ) < n − 1 r(A)<n-1 r(A)<n1,则 A A A中的所有 n − 1 n-1 n1阶子式全为 0 0 0,则 A ∗ = O , r ( A ∗ ) = 0 A^*=O,r(A^*)=0 A=O,r(A)=0
    r ( A ) = n − 1 r(A)=n-1 r(A)=n1,则
    A ∗ A = ∣ A ∣ E = O ⇓ r ( A ) + r ( A ∗ ) ≤ n ⇓ r ( A ∗ ≤ 1 ) A^*A=|A|E=O\\ \Downarrow\\ r(A)+r(A^*)\leq n\\ \Downarrow\\ r(A^*\leq 1) AA=AE=Or(A)+r(A)nr(A1)
    又因为 A A A中含有 n − 1 n-1 n1阶子式非 0 0 0,则 r ( A ∗ ) ≥ 1 r(A^*)\geq 1 r(A)1,所以 r ( A ∗ ) = 1 r(A^*)=1 r(A)=1
  • 如果 A A A可逆,则 r ( A B ) = r ( B ) , r ( B A ) = r ( B ) r(AB)=r(B),r(BA)=r(B) r(AB)=r(B),r(BA)=r(B)
  • 左乘列满秩或右乘行满秩矩阵的秩不变
  • r ( [ A O O B ] ) = r ( A ) + r ( B ) r(\begin{bmatrix}A&O\\O&B\end{bmatrix})=r(A)+r(B) r([AOOB])=r(A)+r(B)
  • r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB)≤min(r(A),r(B)) r(AB)min(r(A),r(B))
    证明:设 r ( A ) = r r(A)=r r(A)=r,则存在可逆矩阵 P , Q P,Q P,Q使得 P A Q = [ E r O O O ] m × n PAQ=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}_{m\times n} PAQ=[ErOOO]m×n P A B = [ E r O O O ] Q − 1 B = [ E r O O O ] [ B r × s B ( n − r ) × s ] = [ B r × s O ] PAB=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}Q^{-1}B=\begin{bmatrix}E_r&O\\O&O\end{bmatrix}\begin{bmatrix}B_{r\times s}\\B_{(n-r)\times s}\end{bmatrix}=\begin{bmatrix}B_{r\times s}\\O\end{bmatrix} PAB=[ErOOO]Q1B=[ErOOO][Br×sB(nr)×s]=[Br×sO] r ( A B ) = r ( P A B ) = r ( [ B r × s O ] ) = r ( B r × s ) ≤ r ≤ r ( A ) r(AB)=r(PAB)=r(\begin{bmatrix}B_{r\times s}\\O\end{bmatrix})=r(B_{r\times s})≤r≤r(A) r(AB)=r(PAB)=r([Br×sO])=r(Br×s)rr(A)由此可得 r ( A B ) = r ( ( A B ) T ) = r ( B T A T ) ≤ r ( B T ) = r ( B ) r(AB)=r((AB)^T)=r(B^TA^T)≤r(B^T)=r(B) r(AB)=r((AB)T)=r(BTAT)r(BT)=r(B) r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB)≤min(r(A),r(B)) r(AB)min(r(A),r(B))
  • m a x ( r ( A ) , r ( B ) ) ≤ r ( A ∣ B ) ≤ r ( A ) + r ( B ) max(r(A),r(B))≤r(A|B)≤r(A)+r(B) max(r(A),r(B))r(AB)r(A)+r(B)
    证明:设 r ( A ) = r , r ( B ) = t r(A)=r,r(B)=t r(A)=r,r(B)=t P A T = A 1 ( 行阶梯, r 个非零行 ) Q B T = B 1 ( 行阶梯, t 个非零行 ) PA^T=A_1(行阶梯,r个非零行)\\QB^T=B_1(行阶梯,t个非零行) PAT=A1(行阶梯,r个非零行)QBT=B1(行阶梯,t个非零行)那么 [ P O O Q ] [ A T B T ] = [ A 1 B 1 ] \begin{bmatrix}P&O\\O&Q\end{bmatrix}\begin{bmatrix}A^T\\B^T\end{bmatrix}=\begin{bmatrix}A_1\\B_1\end{bmatrix} [POOQ][ATBT]=[A1B1] r ( A ∣ B ) = r [ A T B T ] = [ A 1 B 1 ] ≤ r + t ≤ r ( A ) + r ( B ) r(A|B)=r{\begin{bmatrix}A^T\\B^T\end{bmatrix}}=\begin{bmatrix}A_1\\B_1\end{bmatrix}≤r+t≤r(A)+r(B) r(AB)=r[ATBT]=[A1B1]r+tr(A)+r(B)
  • r ( A + B ) ≤ r ( A ∣ B ) ≤ r ( A ) + r ( B ) r(A+B)\leq r(A|B)\leq r(A)+r(B) r(A+B)r(AB)r(A)+r(B)
    证明:构造矩阵
    [ A + B B ] \begin{bmatrix} A+B\\ B \end{bmatrix} [A+BB]
    经初等行变换得
    [ A B ] \begin{bmatrix} A\\ B \end{bmatrix} [AB]
    所以
    r ( A + B ) ≤ r ( [ A + B B ] ) = r ( [ A B ] ) = r ( [ A B ] T ) = r [ A T , B T ] ≤ r ( A T ) + r ( B T ) = r ( A ) + r ( B ) r(A+B)\leq r(\begin{bmatrix} A+B\\ B \end{bmatrix}) =r(\begin{bmatrix} A\\ B \end{bmatrix}) =r(\begin{bmatrix} A\\ B \end{bmatrix}^T) =r[A^T,B^T] \leq r(A^T)+r(B^T)=r(A)+r(B) r(A+B)r([A+BB])=r([AB])=r([AB]T)=r[AT,BT]r(AT)+r(BT)=r(A)+r(B)
  • A m × n B n × s = O A_{m\times n}B_{n\times s}=O Am×nBn×s=O,则 r ( A ) + r ( B ) ≤ n r(A)+r(B)\leq n r(A)+r(B)n
    证明:如果 A B = O AB=O AB=O,那么 B B B的每个列都是齐次方程组 A X = O AX=O AX=O的解。设 r ( A ) = r r(A)=r r(A)=r,那么方程组 A X = O AX=O AX=O最多有 n − r n-r nr个线性无关的解,所以: r ( B ) < = n − r = n − r ( A ) r(B)<=n-r=n-r(A) r(B)<=nr=nr(A)
  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亻乍屯页女子白勺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值