1.Weisfeiler-Lehman Algorithm


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


Weisfeiler-Lehman Algorithm是美国的数学家Boris Weisfeiler在1968年发表的论文the reduction of a graph to a canonical form and an algebra arising during this reduction中提出的判断图同构(Graph Isomorphism)与否的算法。

1.图同构介绍

参考自维基百科

图同构描述的是图论中,两个图之间的完全等价关系。在图论的观点下,两个同构的图被当作同一个图来研究。

只有节点数目相同(即同阶)的两个图才有可能同构。

两个简单图 G G G H H H称为是同构的,当且仅当存在一个将 G G G的节点 1 , . . . , n 1,...,n 1,...,n映射到 H H H的节点 1 , . . . , n 1,...,n 1,...,n的一一对应 σ \sigma σ ,使得 G G G中任意两个节点 i i i j j j相连接,当且仅当 H H H中对应的两个节点 σ i \sigma_{i} σi σ j \sigma_{j} σj相连接。同构可记作 G ≃ H G\simeq H GH

在这里插入图片描述

一组彼此同构的图可称为同构图。

一幅图经常可以有多种不同的方式在纸上或屏幕上画出来,所以两个看起来很不同的图也可能是同构的。尤其当图的节点数比较大时,很难一眼从画出的图上判断它们是否同构。

2.Weisfeiler-Lehman Algorithm

第一部分介绍了什么是图同构Weisfeiler-Lehman算法正是为了用来判断图是否同构的算法,因此也被称为Weisfeiler-Lehman Isomorphism Test,不过现在已经发现,单纯的通过该算法还不能够确保图同构。

图中的节点表示为 v i v_i vi,边表示为 e i e_i ei,节点的集合表示为 V \mathcal{V} V,边的集合表示为 E \mathcal{E} E,如此图可以表示为 G = ( V , E ) \mathcal{G}=(\mathcal{V},\mathcal{E}) G=(V,E)

Weisfeiler-Lehman算法是通过进行多次迭代,然后判断节点上的标签值的个数是否一致来判断图是否同构。

算法中:

  • i i i表示算法迭代的次数
  • n n n表示第 n n n个节点
  • L i , n L_{i,n} Li,n表示节点 v n v_n vn邻居节点标签的集合(multiset,A multiset is a set where elements may appear multiple times.)
  • C i , n C_{i,n} Ci,n表示算法每一次迭代中给每个节点赋予的标签值。 L i , n L_{i,n} Li,n相同的节点 C i , n C_{i,n} Ci,n也相同。

算法步骤:

  • 1)开始时初始化所有节点 C 0 , n = 1 C_{0,n}=1 C0,n=1
  • 2)第 i i i步,对于每个节点 n n n,定义 L i , n 是由 L_{i,n}是由 Li,n是由i-1 步的 步的 步的C_{i-1,m} 组成的 ‘ m u l t i s e t ‘ , 组成的`multiset`, 组成的multiset,m 是节点 是节点 是节点n$的所有邻居节点。
  • 3)计算 C i , n = h a s h ( L i , n ) C_{i,n}=hash(L_{i,n}) Ci,n=hash(Li,n)
  • 4)统计每种标签值节点的个数,重复步骤2)3)N步或算法收敛。

例如:

下图中Graph1Graph2是同构的:

在这里插入图片描述

初始化:

在这里插入图片描述

对于iteration=1

在这里插入图片描述
在这里插入图片描述

对于iteration=2

在这里插入图片描述
在这里插入图片描述

对于iteration=3

在这里插入图片描述
在这里插入图片描述

到第3步可以看到两个图中都是有2个7,1个8,2个9, 因此,两个图是同构的。

3.后话

关于算法作者Boris Weisfeiler,是一个数学家,其本身是犹太人,出生在苏联,后转到美国,但是在1985年于智利神秘失踪,生死未卜。


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


参考资料

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值