常见GPU算力(A100,GA100)

一、硬件参数

A100 40GB PCIeA100 80GB PCIeA100 40GB SXMA100 80GB SXM
核心GA100GA100GA100GA100
架构AmpereAmpereAmpereAmpere
SM108108108108
CUDA Cores / SM64646464
CUDA Cores / GPU6912691269126912
FP32 Cores / SM64646464
FP32 Cores / GPU6912691269126912
FP64 Cores / SM32323232
FP64 Cores / GPU3456345634563456
INT32 Cores / SM64646464
INT32 Cores / GPU6912691269126912
Tensor Core3rd3rd3rd3rd
Tensor Cores / SM4444
Tensor Cores / GPU432432432432
GPU 加速频率 (MHz)1410141014101410
显存40 GB HBM280 GB HBM2e40 GB HBM280 GB HBM2e
显存位宽 (bit)5120512051205120
显存带宽 (GBps)1555193515552039
一缓 (KB per SM)192192192192
二缓 (MB)40404040
接口PCIe 4.0x16PCIe 4.0x16SXM4SXM4
TDP (W)250300400400
制程TSMC N7 (7nm)TSMC N7 (7nm)TSMC N7 (7nm)TSMC N7 (7nm)

        注意到,完整 GA100 核心有 8 组 GPC,每组 GPC 包含 8 组 TPC,单个 TPC 中含有两个 SM 单元,因此完整 GA100 核心共有 128 个 SM 单元,但 A100 的 GA100 核心只开启其中的 108 个。每个 SM 单元中有 64 个 CUDA 计算单元。每个 SM 单元中有 64 个 FP32 计算单元、64 个 INT32 计算单元和 32 个 FP64 计算单元。

        每个 SM 单元中有 4 个 Tensor Core,因此 GA100 总共含有 432 个 Tensor Core。支持的数据类型有FP16、BF16、TF32、FP32、FP64、INT8、INT4、Binary。

二、算力

1、CUDA Core 算力

浮点:TFLOPS

整型:TIOPS

FP3219.5
FP1678
FP649.7
BF1639
INT3219.5

2、Tensor Core 算力

浮点:TFLOPS

整型:TIOPS

稠密/稀疏

FP16312 / 624
BF16312 / 624
TF32156 / 312
FP3219.5
FP6419.5
INT8624 / 1248
INT41248 / 2496
Binary4992

### 常见H系列GPU对比 NVIDIA的H系列GPU专为高性能计和图形处理设计,在人工智能训练、科学模拟等领域表现出色。以下是几款常见的H系列GPU及其浮点运和张量核心性能: | GPU型号 | FP32单精度 (TFLOPS) | Tensor Cores (TFLOPS) | | --- | --- | --- | | NVIDIA A100 PCIe Gen4 80GB HBM2e | 19.5 | 780[^5] | | NVIDIA RTX A6000 | 38.7 | - | | NVIDIA Tesla V100S PCI-E 32GB | 15.7 | 125 | 对于依赖于大量矩阵乘法操作的应用程序来说,拥有更多Tensor Core的A100能够在深度学习框架如TensorFlow或PyTorch下提供显著加速效果[^4]。 值得注意的是,虽然RTX A6000不支持Tensor Core,但在传统FP32工作负载方面仍然具备强劲的表现。而Tesla V100作为上一代旗舰产品也保持着不错的竞争,特别是在混合精度模式下的效率更高。 为了更好地评估具体应用场景中的实际性能差异,建议利用专业的硬件监控软件如HWMonitor或者MSI Afterburner来进行详细的测试与分析[^3]。 ```python import numpy as np # 示例:比较不同GPU在相同任务上的理论峰值性能 gpu_performance = { 'A100': {'fp32': 19.5, 'tensor': 780}, 'RTX_A6000': {'fp32': 38.7}, 'V100': {'fp32': 15.7, 'tensor': 125} } def compare_gpu(gpu_list): results = [] for gpu in gpu_list: result = f"{gpu}: FP32={gpu_performance[gpu]['fp32']} TFLOPS" if 'tensor' in gpu_performance[gpu]: result += f", Tensor={gpu_performance[gpu]['tensor']} TFLOPS" results.append(result) return '\n'.join(results) print(compare_gpu(['A100', 'RTX_A6000', 'V100'])) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值