题意
迷宫当中有
n
n
n扇门,第
i
i
i 扇门可以在
x
i
x_i
xi 分钟带你走出迷宫,或者回到开始的位置。求走出迷宫所花费时间的期望。
思路
-
方法一:
可以看出这是一个几何分布,假设有 k k k 扇走出迷宫的门,找到走出迷宫那扇门的尝试次数为 X X X,在任意一次实验中走出迷宫的概率为 p = n x + n = k n p=\cfrac{n_{x^+}}{n}=\cfrac{k}{n} p=nnx+=nk
根据 证明 可以得到 X X X 的期望 E ( X ) = 1 p = n k E(X)=\cfrac{1}{p}=\cfrac{n}{k} E(X)=p1=kn
那么每一次实验所花费的时间的期望: E ( t ) = ∑ P i ⋅ x i = ∑ x i n E(t)=\sum{P_i\cdot x_i}=\cfrac{\sum{x_i}}{n} E(t)=∑Pi⋅xi=n∑xi
所以总的时间期望: E ( T ) = E ( X ) ⋅ E ( t ) = ∑ x i k E(T)=E(X)\cdot E(t)=\cfrac{\sum{x_i}}{k} E(T)=E(X)⋅E(t)=k∑xi -
方法二:
写出期望公式,求出 E E E 的值。 E = ∑ x i ⋅ P i E=\sum{x_i\cdot P_i} E=∑xi⋅Pi
考虑第一次门的选择
如果选择可以一次走出迷宫的门走出的时间为: E c n t = 1 = ∑ x i + n E_{cnt=1}=\cfrac{\sum{x_i^+}}{n} Ecnt=1=n∑xi+
如果选择了回到开始位置的门,走出的时间为: E c n t > 1 = ∑ ( x i − + E ) n = ∑ ( x i − ) + ( n − k ) ⋅ E n E_{cnt>1}=\cfrac{\sum{(x_i^-+E)}}{n}=\cfrac{\sum{(x_i^-)+(n-k)\cdot E}}{n} Ecnt>1=n∑(xi−+E)=n∑(xi−)+(n−k)⋅E
所以: E = E c n t = 1 + E c n t > 1 = ∑ x i + n + ∑ ( x i − ) + ( n − k ) ⋅ E n = ∑ x i + ( n − k ) ⋅ E n E=E_{cnt=1}+E_{cnt>1}=\cfrac{\sum{x_i^+}}{n}+\cfrac{\sum{(x_i^-)+(n-k)\cdot E}}{n}=\cfrac{\sum{x_i}+(n-k)\cdot E}{n} E=Ecnt=1+Ecnt>1=n∑xi++n∑(xi−)+(n−k)⋅E=n∑xi+(n−k)⋅E
解之得: E = ∑ x i k E=\cfrac{\sum{x_i}}{k} E=k∑xi
代码
有了思路代码就很好写了…