A - A Dangerous Maze

题意
迷宫当中有 n n n扇门,第 i i i 扇门可以在 x i x_i xi 分钟带你走出迷宫,或者回到开始的位置。求走出迷宫所花费时间的期望。
思路

  • 方法一:
    可以看出这是一个几何分布,假设有 k k k 扇走出迷宫的门,找到走出迷宫那扇门的尝试次数为 X X X,在任意一次实验中走出迷宫的概率为 p = n x + n = k n p=\cfrac{n_{x^+}}{n}=\cfrac{k}{n} p=nnx+=nk
    根据 证明 可以得到 X X X 的期望 E ( X ) = 1 p = n k E(X)=\cfrac{1}{p}=\cfrac{n}{k} E(X)=p1=kn
    那么每一次实验所花费的时间的期望: E ( t ) = ∑ P i ⋅ x i = ∑ x i n E(t)=\sum{P_i\cdot x_i}=\cfrac{\sum{x_i}}{n} E(t)=Pixi=nxi
    所以总的时间期望: E ( T ) = E ( X ) ⋅ E ( t ) = ∑ x i k E(T)=E(X)\cdot E(t)=\cfrac{\sum{x_i}}{k} E(T)=E(X)E(t)=kxi

  • 方法二:
    写出期望公式,求出 E E E 的值。 E = ∑ x i ⋅ P i E=\sum{x_i\cdot P_i} E=xiPi
    考虑第一次门的选择
    如果选择可以一次走出迷宫的门走出的时间为: E c n t = 1 = ∑ x i + n E_{cnt=1}=\cfrac{\sum{x_i^+}}{n} Ecnt=1=nxi+
    如果选择了回到开始位置的门,走出的时间为: E c n t > 1 = ∑ ( x i − + E ) n = ∑ ( x i − ) + ( n − k ) ⋅ E n E_{cnt>1}=\cfrac{\sum{(x_i^-+E)}}{n}=\cfrac{\sum{(x_i^-)+(n-k)\cdot E}}{n} Ecnt>1=n(xi+E)=n(xi)+(nk)E
    所以: E = E c n t = 1 + E c n t > 1 = ∑ x i + n + ∑ ( x i − ) + ( n − k ) ⋅ E n = ∑ x i + ( n − k ) ⋅ E n E=E_{cnt=1}+E_{cnt>1}=\cfrac{\sum{x_i^+}}{n}+\cfrac{\sum{(x_i^-)+(n-k)\cdot E}}{n}=\cfrac{\sum{x_i}+(n-k)\cdot E}{n} E=Ecnt=1+Ecnt>1=nxi++n(xi)+(nk)E=nxi+(nk)E
    解之得: E = ∑ x i k E=\cfrac{\sum{x_i}}{k} E=kxi

代码
有了思路代码就很好写了…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值