信号与系统->基本概念

本文深入探讨了信号与系统的基本概念,包括信号的分类(连续与离散、能量与功率)、典型信号(阶跃、冲激、冲激偶)的性质,以及线性时不变系统的判断方法。此外,还介绍了如何通过方程和框图进行系统转化,并分析了系统的因果性、稳定性等关键特性。
摘要由CSDN通过智能技术生成

重点框架

本课程主要研究电信号随时间变化

重要定义

分类概念

连续时间信号:信号在连续时间内都有定义(只要求定义域连续)
离散信号:仅在一些离散的瞬间才有定义的信号

功率信号和能量信号

能量信号:能量有界,功率一定为0,离散变求和
功率信号:功率有界,E=∞,离散变求和

典型信号及阶跃、冲激、冲激偶

典型确定性信号:直流,单位斜坡,指数,正余弦,复指数,抽样
阶跃函数、冲激函数、冲击偶
ε ( t ) = ∫ − ∞ t δ ( τ ) d τ δ ( t ) = d ε ( t ) d t \varepsilon(t)=\int_{-\infty}^{t} \delta(\tau) d \tau \quad \delta(t)=\frac{d \varepsilon(t)}{d t} ε(t)=tδ(τ)dτδ(t)=dtdε(t)

冲激函数的取样性
δ ( t ) f ( t ) = δ ( t ) f ( 0 ) ∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) \begin{array}{l} \delta(t) f(t)=\delta(t) f(0) \\ \int_{-\infty}^{+\infty} \delta(t) f(t) d t=f(0) \end{array} δ(t)f(t)=δ(t)f(0)+δ(t)f(t)dt=f(0)

冲激偶(冲激函数的导数)
三个重要的性质
f ( t ) δ ′ ( t ) = f ( 0 ) δ ′ ( t ) − f ′ ( 0 ) δ ( t ) f(t) \delta^{\prime}(t)=f(0) \delta^{\prime}(t)-f^{\prime}(0) \delta(t) f(t)δ(t)=f(0)δ(t)f(0)δ(t)

∫ − ∞ ∞ δ ′ ( t ) f ( t ) d t = − f ′ ( 0 ) \int_{-\infty}^{\infty} \delta^{\prime}(t) f(t) d t=-f^{\prime}(0) δ(t)f(t)dt=f(0)

∫ − ∞ t δ ′ ( t ) d t = δ ( t ) \int_{-\infty}^{t} \delta^{\prime}(t) d t=\delta(t) tδ(t)dt=δ(t)
比例性 δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(a t)=\frac{1}{|a|} \delta(t) δ(at)=a1δ(t)

题型

判断能量信号和功率信号

1). x ( t ) = { e − t , t ≥ 0 0 , t < 0 x(\mathrm{t})=\left\{\begin{array}{ll}e^{-t}, & t \geq 0 \\ 0, & t<0\end{array}\right. x(t)={ et,0,t0t<0
2). x ( n ) = { 1 , n ≥ 0 0 , n < 0 x(\mathrm{n})=\left\{\begin{array}{ll}1, & n \geq 0 \\ 0, & n<0\end{array}\right. x(n)={ 1,0,n0n<0

1). E = ∫ − ∞ ∞ ∣ x ( t ) ∣ 2 d t = ∫ 0 ∞ e − 2 t d t = 1 2 \quad E\\ =\int_{-\infty}^{\infty}|x(\mathrm{t})|^{2} d t\\ =\int_{0}^{\infty} e^{-2 t} d t\\ =\frac{1}{2} E=x(t)2dt=0e2tdt=21
能量信号
2). P = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N N ∣ x ( n ) ∣ 2 = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = 0 N 1 = lim ⁡ N → ∞ N + 1 2 N + 1 = 1 2 \quad P\\ =\lim \limits_{N \rightarrow \infty} \frac{1}{2 N+1} \sum\limits_{n=-N}^{N}|x(\mathrm{n})|^{2}\\ =\lim \limits_{N \rightarrow \infty} \frac{1}{2 N+1} \sum\limits_{n=0}^{N} 1\\ =\lim \limits_{N \rightarrow \infty} \frac{N+1}{2 N+1}\\ =\frac{1}{2} \quad P=Nlim2N+11n=NNx(n)2=Nlim2N+11n=0N1=Nlim2N+1N+1=21
功率信号

方程和框图互相转化

连续系统

根据方程画框图
①左侧写激励,右侧写响应
②根据最高次数中间补对应数量的积分器,左侧补加法器
u C ′ ′ ( t ) + R L u C ′ ( t ) + 1 L C u C ( t ) = 1 L C u S ( t ) u_{C}^{\prime \prime}(t)+\frac{R}{L} u_{C}^{\prime}(t)+\frac{1}{L C} u_{C}(t)=\frac{1}{L C} u_{S}(t) uC(t)+LRuC(t)+LC1uC(t)=LC1uS(t)
y ′ ′ ( t ) + a y ′ ( t ) + b y ( t ) = c f ( t ) y^{\prime \prime}(t)+a y^{\prime}(t)+b y(t)=c f(t) y(t)+ay(t)+by(t)=cf(t)
a = R L b = 1 L C c = 1 L C a=\frac{R}{L} \quad b=\frac{1}{L C} \quad c=\frac{1}{L C} a=LRb=LC1c=LC1
y ′ ′ ( t ) = − a y ′ ( t ) − b y ( t ) + c f ( t ) y^{\prime \prime}(t)=-a y^{\prime}(t)-b y(t)+c f(t) y(t)=ay(t)by(t)+cf(t)
在这里插入图片描述

根据框图画方程
①设置中间变量,左边高次,右边低次
②列写两个加法器

在这里插入图片描述
左边加法器
x ′ ′ ( t ) = − a 2 x ′ ( t ) − a 1 x ( t ) + f ( t ) x^{\prime \prime}(t)=-a_{2} x^{\prime}(t)-a_{1} x(t)+f(t) x(t)=a2x(t)a1x(t)+f(t)
x ′ ′ ( t ) + a 2 x ′ ( t ) + a 1 x ( t ) = f ( t ) x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)=f(t) x(t)+a2x(t)+a1x(t)=f(t)
右边加法器
y ( t ) = b 2 x ′ ′ ( t ) + b 1 x ′ ( t ) + x ( t ) a 1 y ( t ) = b 2 a 1 x ′ ′ ( t ) + b 1 a 1 x ′ ( t ) + a 1 x ( t ) a 2 y ′ ( t ) = b 2 ( a 2 x ′ ′ ( t ) ) ′ + b 1 ( a 2 x ′ ( t ) ) ′ + a 2 x ′ ( t ) y ′ ′ ( t ) = b 2 ( x ′ ′ ( t ) ) ′ ′ + b 1 ( x ′ ( t ) ) ′ ′ + x ′ ′ ( t ) y(t)=b_{2} x^{\prime \prime}(t)+b_{1} x^{\prime}(t)+x(t)\\ a_{1} y(t)=b_{2} a_{1} x^{\prime \prime}(t)+b_{1} a_{1} x^{\prime}(t)+a_{1} x(t) \\ a_{2} y^{\prime}(t) =b_{2}\left(a_{2} x^{\prime \prime}(t)\right)^{\prime}+b_{1}\left(a_{2} x^{\prime}(t)\right)^{\prime}+a_{2} x^{\prime}(t) \\ y^{\prime \prime}(t) =b_{2}\left(x^{\prime \prime}(t)\right)^{\prime \prime}+b_{1}\left(x^{\prime}(t)\right)^{\prime \prime}+x^{\prime \prime}(t) y(t)=b2x(t)+b1x(t)+x(t)a1y(t)=b2a1x(t)+b1a1x(t)+a1x(t)a2y(t)=b2(a2x(t))+b1(a2x(t))+a2x(t)y(t)=b2(x(t))+b1(x(t))+x(t)

y ′ ′ ( t ) + a 2 y ′ ( t ) + a 1 y ( t ) = b 2 ( x ′ ′ ( t ) + a 2 x ′ ( t ) + a 1 x ( t ) ) ′ ′ + b 1 ( x ′ ′ ( t ) + a 2 x ′ ( t ) + a 1 x ( t ) ) ′ + x ′ ′ ( t ) + a 2 x ′ ( t ) + a 1 x ( t ) = b 2 f ′ ′ ( t ) + b 1 f ′ ( t ) + f ( t ) y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) \\ =b_{2}(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t))^{\prime \prime}+b_{1}\left(x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\right)^{\prime}+x^{\prime \prime}(t)+a_{2} x^{\prime}(t)+a_{1} x(t)\\ =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t) y(t)+a2y(t)+a1y(t)=b2(x(t)+a2x(t)+a1x(t))+b1(x(t)+a2x(t)+a1x(t))+x(t)+a2x(t)+a1x(t)=b2f(t)+b1f(t)+f(t)
最终结果 y ′ ′ ( t ) + a 2 y ′ ( t ) + a 1 y ( t ) = b 2 f ′ ′ ( t ) + b 1 f ′ ( t ) + f ( t ) y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{1} y(t) =b_{2} f^{\prime \prime}(t)+b_{1} f^{\prime}(t)+f(t) y(t)+a2y(t)+a1y(t)=b2f(t)+b1f(t)+f(t)

离散系统

y ( k ) − ( 1 + a − b ) y ( k − 1 ) = f ( k ) y(k)-(1+a-b) y(k-1)=f(k) y(k)(1+ab)y(k1)=f(k)
在这里插入图片描述

在这里插入图片描述
左边加法器
x ( k ) = f ( k ) − a 2 x ( k − 1 ) − a 1 x ( k − 2 ) x(k)=f(k)-a_{2} x(k-1)-a_{1} x(k-2) x(k)=f(k)a2x(k1)a1x(k2)
f ( k ) = x ( k ) + a 2 x ( k − 1 ) + a 1 x ( k − 2 ) f(k)=x(k)+a_{2} x(k-1)+a_{1} x(k-2) f(k)=x(k)+a2x(k1)+a1x(k2)
右边加法器
y ( k ) = b 1 x ( k ) + x ( k − 2 ) \mathrm{y}(\mathrm{k})=b_{1} \mathrm{x}(\mathrm{k})+\mathrm{x}(\mathrm{k}-2) y(k)=b1x(k)+x(k2)
a 2 y ( k − 1 ) = b 1 a 2 x ( k − 1 ) + a 2 x ( k − 3 ) a_{2} y(k-1)=b_{1} a_{2} x(k-1)+a_{2} x(k-3) a2y(k1)=b1a2x(k1)+a2x(k3)
a 1 y ( k − 2 ) = b 1 a 1 x ( k − 2 ) + a 1 x ( k − 4 ) a_{1} y(k-2)=b_{1} a_{1} x(k-2)+a_{1} x(k-4) a1y(k2)=b1a1x(k2)+a1x(k4)
y ( k ) + a 2 y ( k − 1 ) + a 1 y ( k − 2 ) = b 1 [ x ( k ) + a 2 x ( k − 1 ) + a 1 x ( k − 2 ) ] + [ x ( k − 2 ) + a 2 x ( k − 3 ) + a 1 x ( k − 4 ) ] = b 1 f ( k ) + f ( k − 2 ) y(k)+a_{2} y(k-1)+a_{1} y(k-2)\\ =b_{1}\left[x(k)+a_{2} x(k-1)+a_{1} x(k-2)\right]+\left[x(k-2)+a_{2} x(k-3)+a_{1} x(k-4)\right]\\ =b_{1} f(k)+f(k-2) y(k)+a2y(k1)+a1y(k2)=b1[x(k)+a2x(k1)+a1x(k2)]+[x(k2)+a2x(k3)+a1x(k4)]=b1f(k)+f(k2)
y ( k ) + a 2 y ( k − 1 ) + a 1 y ( k − 2 ) = b 1 f ( k ) + f ( k − 2 ) y(k)+a_{2} y(k-1)+a_{1} y(k-2)=b_{1} f(k)+f(k-2) y(k)+a2y(k1)+a1y(k2)=b1f(k)+f(k2)

判断线性系统

1.判断分解特性(写出两种输入相加)
2.判断零状态响应,零输入响应线性特征
( 1 ) y ( t ) = f ( t ) + 3 x ( 0 ) f ( t ) + 6 x ( 0 ) + 5 ( 2 ) y ( t ) = 5 ∣ f ( t ) ∣ + 6 x ( 0 ) \begin{array}{ll}(1) y(t)&#

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值