ResNet

ResNet通过批量归一化解决梯度消失和梯度爆炸问题,利用残差块有效避免网络退化。ResNeXt作为ResNet的优化版,采用分组卷积,如3×(3+3),在保持参数量相对较小的同时提高性能。C=32被发现对block深度大于3的情况效果良好。
摘要由CSDN通过智能技术生成

ResNet

在这里插入图片描述

1.通过使用BN解决了梯度消失或梯度爆炸的问题,使数据在一个正态分布内,通过反向传播学习一个合适的均值和方差

2.通过残差解决了退化问题(层数多的网络可能效果还没有层数少的网络效果好,但是引入残差块,F(x)+x, F(x)最差为0,解决了上述可能出现的问题)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上图对于编写代码更加清晰,但是stage2,3,4 的第一个Bottleneck的stride=2,因为要对图片进行下采样,图中有点小问题


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

过路张

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值