论文阅读--深度学习基础文献

本文综述了AlphaGoZero在无人类知识下掌握围棋的技术,以及Transformer的注意力机制如何革新了神经网络结构。讨论了GoogLeNet和Dropout在防止过拟合的应用,以及ReLU神经网络的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文属于资料整理

AlphaGo Zero

论文信息:Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge[J]. nature, 2017, 550(7676): 354-359.
参考文章:
深入浅析AlphaGo Zero与深度强化学习
AlphaGo Zero论文解析

Transformer - Attention is all you need

论文信息:Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.
参考文章:
Self-Attention和Transformer
Transformer论文逐段精读【论文精读】-- 李沐
白话机器学习-Encoder-Decoder框架

Transformer 抛弃了传统的 CNN 和 RNN,没用循环和卷积,整个网络使用了 Attention 机制组成。Transformer 由 Muiti-Attenion 和 Feed Forward Neural Network 组成。可以将时序信息完全做并行处理。

GoogLeNet - Going deeper with convolutions

论文信息:Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
【论文研读】GoogLeNet-Going deeper with convolutions
GoogLeNet / Inception V3 -李沐
【精读AI论文】GoogLeNet(Inception V1)深度学习图像分类算法 - 同济子豪

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

论文信息:Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958.
深度解说Dropout
【精读AI论文】dropout

Rule - Deep sparse rectifier neural networks

论文信息:Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011: 315-323.
深度学习论文笔记(ReLU)
DL论文笔记(ReLU)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

伊丽莎白鹅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值