原文链接
https://www.nature.com/articles/s41467-023-40402-xwww.nature.com/articles/s41467-023-40402-x
一、摘要
本研究内容讨论了一项2期试验的结果,该试验旨在**研究康瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者的安全性和活性**。
试验在两个队列中评估了康瑞珠单抗加阿帕替尼的安全性和活性
- 队列1包括**铂耐药**NPC患者(NCT04547088)
- 队列2包括**PD-1抑制剂耐药**的鼻咽癌患者(NCT04548271)。
**主要终点是客观反应率(ORR),次要终点**包括安全性、反应持续时间、疾病控制率、无进展生存期和总生存期。
主要结果
两个队列都达到了ORR的主要终点:
- 队列1(铂类耐药)的ORR为65%(95% CI, 49.6-80.4,n = 40)
- 队列2(PD-1抑制剂耐药)的ORR为34.3%(95% CI, 17.0-51.8,n = 32)。
安全性简介
在72例患者中,有47例(65.3%)发生≥3级治疗相关不良事件(TRAE)。
预测性生物标志物
对预测性生物标志物的探索性调查显示:
- 在队列1中,B细胞标志物是应答者与非应答者肿瘤中表达差异最大的基因。三级淋巴结构与较高的ORR相关。
- 在队列2中,血管生成基因表达特征与ORR密切相关。康瑞珠单抗加阿帕替尼的疗效与PD-L1、血管内皮生长因子受体2和B细胞相关基因的高表达特征有关。
结论
该试验表明,康瑞珠单抗联合阿帕替尼对RM-NPC患者具有良好的疗效,且安全性可衡量。联合疗法在两个队列中均显示出显著的ORR,表明它有可能成为难治性鼻咽癌的治疗选择。对预测性生物标志物的探索性研究有助于深入了解该疗法反应的生物机制,从而为未来的治疗选择和个性化医疗方法提供潜在指导。
意义
这项试验的结果支持进一步研究将康瑞珠单抗联合阿帕替尼作为RM-NPC患者的治疗方案。已确定的生物标志物可用于预测患者对该疗法的反应,并有助于开发生物标志物驱动的治疗策略。还需要进行更多的研究来验证这些生物标志物的预测价值,并探索将它们纳入鼻咽癌患者临床决策的可能性。
二、引言
本研究内容介绍了鼻咽癌(NPC)的背景信息、其独特性以及复发性或转移性鼻咽癌(RM-NPC)患者面临的挑战。它还讨论了标准治疗方法、免疫疗法,以及研究坎瑞珠单抗加阿帕替尼对这些患者的安全性和活性的2期试验的原理。
鼻咽癌背景
鼻咽癌主要分布在中国南方、东南亚、中东和北非。它最常见于非角化性,与爱泼斯坦-巴氏病毒(EBV)感染密切相关。RM-NPC患者预后较差,中位总生存期(OS)为20个月。
标准治疗
铂类双药,尤其是**顺铂加吉西他滨(GP)是RM-NPC的标准一线治疗方法。免疫疗法,尤其是PD-1/PD-L1抑制剂,已在包括RM-NPC在内的多种癌症中显示出疗效。2022年NCCN指南和CSCO临床指南建议将顺铂/吉西他滨(GP)加PD-1抑制剂作为RM-NPC患者的一线治疗方案**。二线或二线以后,pembrolizumab/nivolumab和camrelizumab/toripalimab显示了有限的客观反应率(ORR),从20.5%到34.1%不等。与单纯化疗相比,抗PD-1单克隆抗体在二线或二线以上治疗中未能显示出生存获益。
第二阶段试验原理
PD-1/PD-L1抑制剂与抗血管生成抗体的联合治疗已在许多恶性肿瘤中显示出疗效。抗血管生成药物可减少调节性T细胞增殖,增加免疫细胞浸润,促进树突状细胞成熟,使肿瘤微环境正常化。阿帕替尼是一种选择性结合血管内皮生长因子受体2的口服酪氨酸激酶抑制剂,在RM-NPC患者中显示出抗肿瘤活性,且安全性可接受。坎瑞珠单抗和阿帕替尼联合用药的II期研究显示,在其他实体瘤中具有令人鼓舞的疗效和可控的安全性。
试验目标
本文报告的二期试验评估了康瑞珠单抗联合阿帕替尼作为二线或后线治疗方案在铂类耐药(队列1)和PD-1抑制剂耐药(队列2)RM-NPC患者中的安全性和活性。两个队列均达到了客观应答率(ORR)这一主要终点。探索性分子分析发现,B细胞标记和三级淋巴结构与队列1中更高的ORR呈正相关,而PD-L1、血管内皮生长因子受体2(KDR)和血管生成基因表达特征与队列2中更高的有效率相关。
结论
本研究强调了康瑞珠单抗加阿帕替尼方案作为铂类耐药和PD-1抑制剂耐药RM-NPC患者的可行治疗方案的良好疗效。分子分析深入揭示了潜在的生物标记物和机制,这些标记物和机制可作为进一步优化这种具有挑战性的疾病治疗策略的靶点。
三、结果
3-1:患者
本研究内容详细介绍了研究康瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者安全性和活性的2期试验的患者入组情况和基线特征。
患者入组和基线特征
在2020年9月8日至2021年1月7日期间,共筛选出66名患者,其中**52名患者入组。27名患者属于组群1,25名患者属于组群2,所有这些患者都纳入了全面的安全性分析集。2021年1月31日,对方案进行了修订,在组群1中增加了13名患者,在组群2中增加了7名患者,使组群1中的患者总数达到40人,组群2中的患者总数达到32人。患者的平均年龄**为45岁,所有患者之前都至少接受过基于铂类药物的RM NPC一线治疗。
在之前一项研究(Jupiter2)的72名患者中,有24人(33%)一线治疗失败。队列2中的所有患者都接受过PD-1抑制剂加化疗或靶向PD-1和CTLA-4的双特异性抗体治疗。51.4%的患者有肝转移,19.4%的患者PD-L1阴性,52.8%的患者PD-L1阳性,20名患者(27.8%)PD-L1状态未知。7名患者在数据关闭时仍在接受试验治疗,65名患者因疾病进展、毒性、完成2年治疗或退出研究等各种原因停止了治疗。3名患者因治疗相关不良事件而退出,11名患者因其他原因退出。在队列1中,9名患者退出,其中2人因COVID-19大流行相关问题退出。队列2中有4名患者因个人原因退出。队列1中有1名患者死于肺炎,与研究治疗无关。队列1和队列2中的2名患者在未说明任何理由的情况下意外退出。第一组40名患者中的36名(90%)和第二组32名患者中的28名(87.5%)被纳入疗效分析集。
分析
该研究的患者群体多种多样,既有既往治疗失败的患者,也有不同PD-L1状态的患者。修订方案的原因是患者兴趣高涨,以及随着样本量的扩大,希望继续评估客观反应率(ORR)的稳定性和可靠性。退出或停止治疗的原因各不相同,包括疾病进展、毒性、个人原因和退出研究。疗效分析集由治疗后疗效评估的可用性决定。
影响
通过患者入组和基线特征,可以清楚地了解研究对象及其治疗史。方案修订和退出的原因凸显了开展临床试验所面临的挑战,如患者的兴趣、患者的可及性和患者的依从性。患者群体的多样性,包括既往治疗失败和PD-L1状态,有助于研究结果的推广。疗效分析集的规模反映了完整数据的可用性,这对研究结果的可靠性非常重要。
结论
患者入组和基线特征显示了研究人群的异质性,这是晚期癌症患者临床试验的典型特征。方案修订和退出的原因强调了试验设计和试验期间患者支持灵活性的必要性。这项研究的患者群体以及退出或停止治疗的原因多种多样,有助于全面了解RM-NPC患者临床试验所面临的挑战和复杂性。
3-2:效果
该内容提供了研究康瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者安全性和活性的二期试验的详细疗效结果。
疗效分析:
- 第一组和第二组分别有27名和25名患者入组,两组患者的主要研究终点均已达到。
- 组群1的27名患者中有18名(67%)和组群2的25名患者中有10名(40%)获得了客观应答。
- 疾病控制率分别为 82%(组群 1)和 72%(组群 2)。
- 修订方案并纳入更多患者后,队列 1 的中位随访时间为 23.3 个月,队列 2 为 18.5 个月。
- 组群 1 中,3 名患者完全应答,23 名患者部分应答,6 名患者病情稳定,4 名患者病情进展。
- 队列 2 中,11 名患者部分应答,11 名患者病情稳定,6 名患者病情进展。
- 中位应答持续时间为 14.6 个月(95% CI 5.5-NE),12 个月的应答持续率为 53.8%(95% CI 34.6-73.0)。
- 在至少进行过一次疗效评估的 36 例患者中,32 例(89%)患者的肿瘤缩小。
- 与基线相比,目标病灶大小的平均最佳变化百分比为-40.7%(标准差为0.27)。
探索性分析:
- 在队列 1 的 40 例患者中,23 例(57.5%)为 PD-L1+ 患者,6 例(15.0%)为 PD-L1- 患者(由 SP142 免疫组化 (IHC) 染色确定)。
- PD-L1+ 患者的 ORR 数值高于 PD-L1- 患者(65.2% vs 50.0%),但差异无统计学意义(P = 0.65)。
- 使用CPS评分,65.0%的患者为PD-L1+,7.5%的患者为PD-L1-,27.5%的患者状态未知。
- PD-L1+患者的**总体反应率(ORR)**高于PD-L1阴性患者(65.4% vs 33.3%),但差异无统计学意义(P = 0.53)。
- 在血管内皮生长因子受体 2(KDR)IHC 染色方面,探索性分析的 40 例患者中有 21 例(52.5%)为 KDR+,8 例(20.0%)为 KDR-,而 11 例(27.5%)患者的 KDR 状态不明确。
- KDR+患者的ORR在数量上大于KDR-患者(71.4% vs. 37.5%),KDR-患者的染色阳性率大于1%,但差异无统计学意义(P = 0.20)。
- 在队列 2 中,11 名患者获得部分应答,11 名患者病情稳定,6 名患者病情进展。
- 中位应答持续时间为 2.9 个月(95% CI 1.4-4.5),6 个月应答持续率为 36.4%(95% CI 8.0-64.8)。
- PD-L1+患者的ORR高于PD-L1-患者,但差异无统计学意义(P = 0.18;根据PD-L1 TPS评分)。
- 在PD-L1的CPS中,56.3%为PD-L1+,15.6%为PD-L1-,28.1%为PD-L1状态未知。
- PD-L1阳性患者的ORR高于PD-L1-患者,但差异无统计学意义(P = 0.62)。
- 15名患者的KDR结果为阳性,即阳性染色>1%,而8名患者的KDR结果为阴性,9名患者的KDR结果不明确。
3-3:存活
该内容提供了研究坎瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者安全性和活性的二期试验的生存期数据。
存活率分析:
- 在队列 1 中,40 名患者中有 34 人(85.0%)在截止日期前停止了治疗,6 人(15.0%)仍在继续治疗。
- 34例患者中有22例(64.7%)因疾病进展而停止治疗,1例(2.9%)因不良反应而停止治疗。
- 中位无进展生存期(PFS)为12.6个月(95% CI 1.5-23.7),中位总生存期(OS)未达标。
- 1年总生存率为82.5%(95% CI 70.7-94.3)。
- 在队列 2 中,32 名患者中有 31 人(97%)退出治疗,1 人(3%)仍在接受治疗。
- 31名患者中有27人(87%)因疾病进展退出治疗,2人(7%)因不良反应退出治疗。
- 中位 PFS 为 4.5 个月(95% CI:3.7-5.4),中位 OS 为 16.2 个月(95% CI:13.1-NE)。
- 1年总生存率为68.8%(95% CI 58.9-91.1)。
探索性亚组分析:
- 对队列1和队列2的完整分析集进行的亚组分析显示,与无肝转移的患者相比,有肝转移的患者具有相似的客观反应率(ORR)。
- 在队列1(72.7% vs 62.1%)和队列2(57.1% vs 24.0%)中,既往接受过表皮生长因子受体抑制剂治疗的患者的客观应答率均高于未接受过表皮生长因子受体抑制剂治疗的患者。
- 在队列1(73.1% vs 50.0%)和队列2(42.9% vs 18.2%)中,EBV DNA滴度小于10,000拷贝/毫升的患者的ORR均高于大于10,000拷贝/毫升的患者。不过,差异不具有统计学意义。
血浆 EBV DNA 动态监测:
- 研究期间对血浆 EBV DNA 拷贝数进行了动态监测,72 例患者的监测结果已出炉。
- 与病情稳定或进展的患者相比,客观应答患者的EBV滴度从基线到第28天的降幅更大。
- 在组群1(70% vs 60%)和组群2(43.8% vs 25.0%)中,第28天EBV滴度下降≥50%的患者的ORR明显高于下降<50%的患者。
分析:
- 生存期数据表明,康瑞珠单抗联合阿帕替尼可延长RM-NPC患者的PFS和OS。
- 探索性亚组分析深入揭示了治疗反应的潜在预测性生物标志物,包括既往接受过的表皮生长因子受体抑制剂治疗和EBV DNA滴度。
- 对血浆EBV DNA的动态监测表明,随着时间的推移,EBV DNA水平的变化可能与治疗反应有关。
意义:
- 存活率数据证明了康瑞珠单抗联合阿帕替尼作为RM-NPC患者治疗方案的潜力。
- 探索性亚组分析强调了进一步研究的必要性,以验证表皮生长因子受体抑制剂治疗和EBV DNA水平作为治疗反应生物标志物的预测价值。
- 血浆EBV DNA的动态监测为监测治疗反应提供了潜在的生物标志物,值得进一步研究。
结论
- 这项研究的生存数据和探索性亚组分析有助于深入了解康瑞珠单抗联合阿帕替尼治疗RM-NPC患者的疗效和潜在生物标志物。
- 研究结果支持在临床实践和未来研究中进一步研究这些生物标志物和联合疗法。
3-4:安全
该内容提供了研究康瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者的安全性和活性的二期试验的安全性数据。
安全性分析
在安全性组中,72例患者中有49例(68.1%)需要减少阿帕替尼的剂量,其中39例(79.6%)患者只需要减少一个剂量,17例(34.7%)患者需要减少两个剂量。
与治疗相关的不良事件(AEs)导致72名患者中有49名(68.1%)患者中断阿帕替尼的剂量,15名(20.8%)患者中断康瑞珠单抗的剂量。
阿帕替尼中断治疗最常见的原因是高血压(19例[38.8%])、手足综合征(15例[30.6%])、天门冬氨酸氨基转移酶升高(9例[18.4%])和丙氨酸氨基转移酶升高(8例[16.3%])。
天门冬氨酸氨基转移酶升高(9 例 [18.4%])和丙氨酸氨基转移酶升高(8 例 [16.3%])导致康瑞珠单抗停药。
9名患者因鼻咽坏死(7例[77.8%])、碱性磷酸酶升高(1例[11.1%])和血小板减少(1例[11.1%])而停用阿帕替尼。
3名患者因皮疹(2例[66.7%])和免疫性心肌炎(1例[33.3%])停用了康瑞珠单抗。
最常见的 3-4 级 AE 为高血压(27.8%)、手足综合征(12.5%)和谷草转氨酶升高(11.1%)。
三名患者出现了严重的不良反应,其中两人出现皮疹,一人出现急性免疫性心肌炎,所有这些不良反应均被认为与治疗有关。
9名患者(12.5%)出现了接受性皮肤纤细内皮增生(RCCEP),这是一种常见的、自限性的康瑞珠单抗trAE,其中2人出现了3级事件。
RCCEP 仅发生在皮肤上,病理显示真皮层有毛发状内皮增生和纤细增生。
在治疗期间,有 9 例(12.5%)鼻咽坏死病例通过鼻咽镜和/或磁共振成像确诊。
所有 9 例鼻咽坏死患者均被列为 3 级或以上,其中 1 例 4 级患者出现大出血。
所有九名患者都接受了高压氧和清创治疗,没有人因大出血而死亡。
在队列2中,在整个新辅助治疗阶段单用阿帕替尼,最常见的AE为谷草转氨酶(AST)升高(15[46.9%])、白细胞减少(12[37.5%])和谷丙转氨酶(ALT)升高(11[34.4%])(补充表5)。
分析:
安全性数据表明,康瑞珠单抗联合阿帕替尼治疗RM-NPC患者具有可控的安全性。
最常见的不良反应是高血压、手足综合征和肝酶升高。
严重的不良反应相对罕见,大多数可控,部分与治疗相关。
鼻咽坏死和RCCEP的发生凸显了严重皮肤反应的可能性,尽管这些反应通过适当的干预措施得到了成功控制。
联合疗法的安全性(包括剂量调整和AEs管理)表明,它可以安全地用于RM-NPC患者。
影响:
这项研究的安全性数据有助于人们了解康瑞珠单抗联合阿帕替尼治疗RM-NPC患者的潜在风险和管理策略。
研究结果支持在临床实践和未来研究中进一步研究这种联合疗法,并对AEs进行适当的监测和管理。
鼻咽坏死和RCCEP的发生强调了在发生严重皮肤反应时保持警惕和及时干预的必要性。
结论
该研究的安全性数据表明,虽然康瑞珠单抗联合阿帕替尼具有可控的安全性,但必须密切监测患者的潜在不良反应,尤其是与皮肤和肝功能相关的不良反应。
众所周知,高血压和手足综合征等最常见的不良反应与靶向治疗有关,可通过标准的支持性护理加以控制。
皮疹和免疫性心肌炎等严重不良反应的发生突出表明了持续警惕和及时干预任何毒性迹象的重要性。
安全性数据,包括鼻咽坏死和RCCEP的发生,提供了关于潜在风险的宝贵见解,以及在使用这种联合疗法时谨慎选择患者和密切监测的必要性。
这项研究的安全性发现有助于全面了解康瑞珠单抗联合阿帕替尼的安全性,并为临床决策提供参考,包括可能的剂量调整和支持性护理策略。
未来的研究和临床实践应考虑安全性数据,以优化患者预后和管理潜在的AEs,确保患者在必要时接受适当的监测和干预。
四、在第 1 组应答者肿瘤中发现的 B 细胞和三级淋巴结构
内容讨论了研究康瑞珠单抗联合阿帕替尼治疗难治性复发性/转移性鼻咽癌(RM-NPC)患者安全性和活性的2期试验第1组患者肿瘤样本的分子和组织学分析。
肿瘤样本的分子分析:
采集治疗前后的纵向肿瘤样本,并进行RNA测序(RNA-seq)以分析分子特征。差异表达基因分析显示,与无应答患者相比,治疗应答患者的B细胞相关基因(MZB1、JCHAIN、IGHL)表达量明显更高。
KEGG 富集分析表明,B 细胞介导的免疫对治疗反应非常重要。其他预期会改变 B 细胞功能的基因,如 BTLA,也在应答者中显著富集。为了解决某些样本中肿瘤纯度低的问题,我们使用微环境细胞群(MCP)计数法对 RNA-seq 数据进行了更有针对性的调查。
这项分析再次显示,在基线时,应答者与非应答者的 B 细胞特征富集。在单变量分析中,单独的 B 细胞特征可预测反应,但在多变量分析中却不能,这表明 B 细胞可能与其他免疫亚群一起发挥作用。将MCP-计数器算法应用于98例局部晚期鼻咽癌患者的RNA-seq数据,并比较了高B细胞系与低B细胞系患者的总生存期,结果显示高B细胞系患者的生存期更长。
肿瘤样本的组织学分析:
对肿瘤样本进行组织学评估,以深入了解**B细胞的密度和分布及其与三级淋巴结构(TLS)的关系**。
免疫组化染色证实原发和远处转移病灶中存在三级淋巴结构。
TLSs的多重免疫荧光检测显示,与非应答者相比,应答者的CD19+ B细胞密度更高,TLS平均面积更大。
使用 Halo 分析软件进行的邻近性分析表明,与分散区域相比,B 细胞更接近 TLS 中的 CD4+ T 细胞。
分析:
分子分析表明,B细胞和B细胞相关基因可能是RM-NPC患者对康瑞单抗加阿帕替尼治疗反应的重要生物标志物和促进因素。
组织学分析证实了原发性和转移性病灶中存在TLS,并表明应答者的B细胞更密集地分布在这些结构中。
邻近性分析表明,B细胞和T细胞在TLS中的空间排列可能有助于它们之间的功能性相互作用,从而有可能增强B细胞的抗原递呈能力。
意义:
分子和组织学分析的结果表明,B细胞和TLS可能在RM-NPC患者对康瑞珠单抗加阿帕替尼的反应中发挥作用。
这些数据提供了对潜在生物标志物和机制的见解,可作为在这种具有挑战性的疾病环境中进一步优化治疗策略的目标。
未来的研究可重点关注B细胞和TLS在预测治疗反应中的作用,并为RM-NPC患者的个性化医疗方法提供潜在指导。
结论
本研究的发现强调了B细胞和TLS在RM-NPC患者对康瑞珠单抗加阿帕替尼治疗反应中的潜在重要性。
分子和组织学分析为进一步探索潜在的生物标志物和机制提供了见解,从而改善RM-NPC患者的治疗效果。
五、血管生成和血管密度可预测坎瑞珠单抗联合阿帕替尼治疗组2的临床反应
内容讨论了在研究复发性/转移性鼻咽癌(RM-NPC)难治性患者联合疗法的安全性和活性的二期试验第二组中,将血管生成和血管密度作为坎瑞珠单抗加阿帕替尼临床反应预测因素的分析。
血管生成和血管密度分析:
与队列1相比,队列2的反应率较低,这表明患者之间存在异质性,可能是由于免疫微环境和血管密度的差异造成的。基线测序数据分析显示,与队列1相比,队列2中与肌肉收缩途径相关的基因表达量不同。MCP分析表明,组群2中的中性粒细胞明显增加。
为了探索第2组的预测性生物标志物,我们**绘制了代表血管生成、免疫生物学和骨髓炎症相关基因的热图。结果发现,应答者的血管生成基因特征得分较高,而免疫或髓系基因特征得分较低。Angio基因特征的高表达与客观反应率(ORR)的提高有关**。
根据CD31免疫组织化学(IHC)评估,第2组应答者的血管密度较高。两组患者均检测到血管生成标志物VEGF-A和IL-8,其中应答组的表达量更高。CD31标记的血管内皮细胞(红色)和PD-L1(绿色)免疫荧光染色显示,两组应答者的共表达率均较高,但总体的低共表达率和有限的样本量可能会影响统计意义。MCP分析显示,应答者和非应答者的免疫微环境相似。转录组CD8或IHC CD8染色显示队列1中的值更高,这表明队列2中PD1抑制剂耐药的原因可能是免疫抑制状态。有应答和无应答患者的CD8表达无明显差异,表明**CD8+ T细胞在决定疗效方面不起主要作用**。
分析:
研究结果表明,血管生成和血管密度可预测队列2中卡瑞珠单抗加阿帕替尼的临床反应。
应答者的Angio特征得分较高,血管密度较高,这表明这些因素可能有助于队列2的治疗应答。
有反应者和无反应者的免疫微环境相似,CD8表达也无显著差异,这表明血管生成等其他因素可能在决定疗效方面更为重要。
意义:
该研究揭示了B淋巴细胞和三级淋巴结构对铂耐药患者获得治疗反应至关重要。
就队列2而言,血管密度高的个体更有可能从治疗中获得积极疗效,这凸显了抗血管生成疗法的重要性。
研究结果凸显了血管生成和血管密度作为生物标志物在预测康瑞珠单抗加阿帕替尼对RM-NPC患者疗效方面的潜在作用。
结论
研究表明,血管生成和血管密度可预测坎瑞珠单抗加阿帕替尼(camrelizumab plus apatinib)试验第二组患者的临床反应。
研究结果表明,抗血管生成疗法对第2组血管密度高的患者尤为重要。
这些结果有助于了解这种联合疗法的治疗反应机制,并为预测RM-NPC患者的治疗效果提供了潜在的生物标志物。
六、复发时肿瘤免疫环境的演变
内容讨论了对接受康瑞珠单抗联合阿帕替尼治疗后出现二次治疗耐药的患者复发时肿瘤免疫环境变化的分析。
复发时肿瘤免疫背景变化:
- 在基线和复发后,从最初对治疗有反应(7 例)和没有反应(4 例)的患者中收集了 11 份配对样本。
- 在治疗前后组织匹配的患者中,**KDR(血管内皮生长因子受体)**明显下降(p = 0.004)。
- 对于延迟抵抗(应答者,n = 7),复发时的 TME 向氧化磷酸化和 ATP 合成增加的方向发展,包括 COX4I1、COX6A1、DLD 和 NDUFA2 基因。
- 与基线 TME 相比,复发时观察到细胞外基质组织增加,包括参与胶原纤维组织的基因、AEBP1、COL1A1 和 COL11A1。
- MCP 分析显示,复发时成纤维细胞明显增多。
- 成纤维细胞是胶原蛋白的主要来源,而胶原蛋白对细胞外基质的形成非常重要。
- 石蜡切片的多重免疫荧光与测序结果一致,复发组织中成纤维细胞的数量明显增加。
- 微环境细胞群分析表明,复发时 B 系细胞数量急剧减少,这表明 B 系细胞在治疗反应中发挥了重要作用。
- 对于内在抵抗(无应答者,n = 4),与基线相比,与肌肉系统过程相关的信号通路在复发组织中富集。
- ACTA1、MYH7、TNNC2 和 TNNT3 的表达均有所增加。
- MCP 分析显示,非应答者复发时成纤维细胞增加。
分析:
- 研究结果表明,根据最初的治疗反应,复发时的TME会以不同的方式演变。
- 对于具有延迟耐药性的应答者来说,TME会转向代谢活动和细胞外基质组织的增加,从而有可能形成抵抗药物的物理屏障。
- 成纤维细胞的扩张和胶原蛋白分泌的增加可能会导致纤维化和耐药性。
- 复发时 B 系的减少表明 B 细胞在最初的治疗反应中可能发挥作用。
- 对于具有内在耐药性的无应答者,TME 转向肌肉系统过程,可能表明耐药性的机制不同。
意义:
- 该研究深入揭示了康瑞珠单抗加阿帕替尼治疗患者复发时TME的动态变化。
- 研究结果表明,TME可能会根据最初的治疗反应以可预测的方式发生变化,并在应答者和非应答者中观察到不同的变化。
- 了解这些变化有助于开发克服耐药性的策略,如针对成纤维细胞扩增或肌肉系统过程。
结论
- 该研究表明,根据康瑞珠单抗加阿帕替尼治疗的初始反应,复发时的TME会发生不同的变化。
- 研究结果凸显了成纤维细胞扩张和细胞外基质组织在耐药性中对应答者的潜在重要性。
- 对于无应答者,向肌肉系统过程的转变可能表明了一种独特的耐药机制。
- 还需要进一步的研究来验证这些发现,并探索针对这些机制改善RM-NPC患者治疗效果的潜力。
七、讨论
内容介绍了一项临床试验,该试验评估了抗PD-1抗体(camrelizumab)与血管生成抑制剂(阿帕替尼)联合治疗一线铂类或PD-1抑制剂治疗失败的复发性/转移性鼻咽癌(RM-NPC)患者的疗效和安全性。联合疗法显示出令人鼓舞的抗肿瘤活性和可控的安全性。
分析要点
- 协同疗效: 将免疫检查点抑制剂(如抗-PD-1抗体)与抗血管生成药物联合治疗实体瘤的效果有所改善。本研究使用了康瑞珠单抗(Camrelizumab)和阿帕替尼(apatinib)。
- 患者队列: 研究了两个队列:铂类耐药(队列 1)和 PD-1 抑制剂耐药(队列 2)的 RM-NPC 患者。联合疗法的客观反应率(ORR)分别为65.0%和34.4%,中位无进展生存期(PFS)分别为12.6个月和4.5个月。
- 治疗改善: 在铂类耐药患者中,与单药阿帕替尼或PD-1抑制剂相比,联合疗法的ORR明显更高,之前的ORR从17.0%到34.1%不等。1年总生存率也明显更高,达到82.5%。
- PD-1抑制剂耐药疾病: 在对PD-1抑制剂耐药的患者中,与阿帕替尼单药治疗相比,联合疗法仍能产生更高的ORR,ORR约为30%。
- 生物标志物: PD-L1和血管内皮生长因子受体2(KDR)的表达被用作预测相应疗法疗效的生物标志物。PD-L1 阳性患者和 KDR 阳性患者的 ORR 数值较高,但差异无统计学意义。
- EGFR 抑制剂: 研究还注意到,接受表皮生长因子受体(EGFR)抑制剂联合治疗的患者的ORR更高。
- 安全性: 联合疗法的安全性与之前的实体瘤研究一致。常见的不良反应包括白细胞减少、中性粒细胞减少、疲劳、蛋白尿、手足综合征、肝酶升高和甲状腺功能减退。最常见的 3 级不良反应是高血压、手足综合征、肝酶增高和鼻咽坏死。
- 鼻咽坏死: 联合疗法增加了鼻咽坏死的风险,尤其是放疗与抗血管生成疗法开始时间间隔较短的患者。不过,这种毒性是可控的,大多数患者经保守治疗后即可痊愈。
- 减少剂量: 与阿帕替尼单药治疗相比,3级或3级以上手足综合征的发生率较低,这可能是由于阿帕替尼在该联合疗法中减少了三分之二的剂量。
- 结论: 该研究表明,对于一线治疗失败的RM-NPC患者,康瑞珠单抗和阿帕替尼的联合治疗可能是一种潜在的治疗选择,与单药治疗相比,可提高应答率和无进展生存期。不过,尤其是近期接受过放疗的患者应谨慎使用,以控制鼻咽坏死的风险。
内容概述了一项研究的结果,该研究调查了免疫检查点抑制剂坎瑞珠单抗与血管生成抑制剂阿帕替尼联合治疗复发性/转移性鼻咽癌(RM-NPC)的情况。研究重点是免疫微环境对疗效的影响,以及抗血管生成疗法可增强免疫疗法的机制。
分析要点
- 免疫微环境与治疗反应: 研究发现,治疗前的免疫微环境,尤其是**PD-L1和KDR的表达水平,可预测康瑞珠单抗加阿帕替尼组合的临床活性。在两个队列中,这些标志物水平越高,疗效越好**。
- B 细胞与 T 细胞的相互作用: 研究发现,B细胞与肿瘤微环境(TME)中的T细胞有明显的相互作用,这表明B细胞在抗癌免疫反应中起着关键作用。
- 三级淋巴结构(TLS): 肿瘤中**TLS水平较高的患者对联合疗法的反应较好**,这与使用免疫检查点抑制剂治疗的其他恶性肿瘤类似。 TLS是一种类似淋巴结的结构,被认为对肿瘤内的免疫反应非常重要。
- 作用机制: 该研究深入揭示了抗血管内皮生长因子疗法(阿帕替尼)如何增强抗肿瘤免疫力并提高抗PD-L1免疫疗法的疗效。 抗血管内皮生长因子似乎通过增加CD8+ T细胞和树突状细胞的数量与抗PD-L1产生协同作用。
- 抗药性: 研究观察到联合疗法的不同耐药模式。内在耐药性与成纤维细胞的增加有关,而延迟耐药性的特点是B细胞密度下降,细胞毒性T细胞和成纤维细胞增加。
- 局限性: 该研究存在一些局限性,包括样本量较小、缺乏与其他治疗方案的比较,以及由于患者接受的前线治疗不同而导致研究人群的异质性。
- 结论: 坎瑞珠单抗和阿帕替尼联合疗法在铂类耐药和PD-1抑制剂耐药的RM-NPC中显示出良好的抗肿瘤活性和可控的安全性。PD-L1、KDR和B细胞相关基因特征高表达的患者更有可能从这一组合中获益。需要进行3期试验来验证这种疗法的潜在益处。
总之,这项研究表明,免疫微环境在决定免疫疗法的反应方面起着关键作用,将免疫检查点抑制剂与血管生成抑制剂联合使用可能会改善 RM-NPC 患者的预后。 研究结果还强调了B细胞在TME中的重要性,以及TLS作为预测性生物标记物的潜力。 不过,还需要更大规模的研究来证实这些发现,并更好地了解这种联合疗法的作用机制和耐药性。
八、方法
8-1:研究设计和参与者
该研究是一项单臂、开放标签、2 期临床试验,在中国广州的一家癌症中心进行。它涉及两组复发性或转移性鼻咽癌(RM-NPC)患者。队列 1 包括对铂类药物耐药且未接受过免疫检查点抑制剂治疗的患者。队列2包括对免疫检查点抑制剂耐药的患者。
该试验的主要目的是研究新治疗方案在这些特定患者群体中的疗效和安全性。入组患者的年龄在 18 岁至 75 岁之间,病情表现良好(ECOG 0-1),在接受标准治疗后病情有所进展。对于队列 1,这意味着在接受一线铂类化疗后病情出现进展;对于队列 2,这意味着在接受或未接受铂类化疗的情况下接受免疫检查点抑制剂免疫疗法后病情出现进展。
根据 RECIST 1.1 标准,患者必须有可测量的肿瘤病灶,并有足够的器官功能,如特定的实验室值所示。他们还必须有至少三个月的预期寿命,并愿意提供肿瘤组织样本用于生物标记物分析。
**排除标准**包括活动性自身免疫性疾病患者、严重出血史患者、肿瘤侵犯重要血管或坏死证据患者以及曾接受过血管内皮生长因子受体抑制剂治疗的患者。
该试验已获得中山大学肿瘤防治中心研究伦理委员会的批准,并按照《赫尔辛基宣言》进行。所有患者在参与前均已知情同意。
总之,这项试验旨在评估一种新治疗方法在两种不同人群中的疗效,即已用尽标准治疗方案的 RM-NPC 患者。研究设计确保参与者适合参加试验,并确保他们的参与符合伦理要求。
8-2:流程
文中概述的程序描述了一项二期临床试验中两组复发性或转移性鼻咽癌(RM-NPC)患者的治疗计划和监测方案。以下是内容摘要和分析:
治疗方案:
- 队列1:患者接受静脉注射康瑞珠单抗(每3周200毫克)和口服阿帕替尼(每天250毫克)的联合治疗。
- 队列 2:患者在前两周接受阿帕替尼单药治疗,以改变免疫耐受微环境,随后接受康瑞珠单抗和阿帕替尼联合治疗。
剂量选择:
- 坎瑞珠单抗和阿帕替尼的剂量是根据以往晚期癌症I期研究的结果选定的。
不良事件监测:
- 持续监测不良事件(AEs),采用 Pocock 型阈值检测毒性。
- 治疗一直持续到疾病进展、出现不可接受的毒性或撤回同意为止。
巩固治疗:
- 获得完全或部分应答的患者接受六个周期的巩固治疗。
剂量修改:
- 不允许减少剂量,但允许为控制 AEs 而中断剂量。
- 因血液学或非血液学AE而中断康瑞珠单抗或阿帕替尼的具体标准已列出。
- 如果阿帕替尼的不良反应持续存在,可按一定的增量减少阿帕替尼的剂量。
- 如果中断剂量的时间超过一定期限,则规定永久停止治疗。
坏死严重程度评估:
- 坏死严重程度分为不同等级,等级越高,需要采取的侵入性干预措施越多,直至出现危及生命的后果(4级)或死亡(5级)。
基线和随访评估:
- 基线评估包括一套全面的测试和扫描。
- 在最初的 12 个周期中,每 6 周评估一次肿瘤反应,之后每 12 周根据 RECIST 1.1 标准进行一次评估。
- 每个周期进行常规血液化验和检查。
不良事件分级:
- 根据美国国家癌症研究所《不良事件通用术语标准》(CTCAE)5.0 版对不良事件进行监测和分级。
分析:
- 治疗方案包括使用坎瑞珠单抗的免疫疗法和使用阿帕替尼的靶向疗法,阿帕替尼是一种血管内皮生长因子受体抑制剂。
- 试验设计包括第二组的战略方法,即在阿帕替尼与免疫疗法结合之前,先单独使用阿帕替尼,以改变肿瘤微环境。
- 对AEs的监测非常严格,有明确的剂量中断和调整指南,以控制毒性,同时努力保持疗效。
- 对应答者进行巩固治疗的目的是巩固应答并改善患者预后。
- 坏死严重程度评估和管理计划反映了治疗相关并发症的可能性。
- 使用 RECIST 1.1 标准进行肿瘤反应评估是临床试验的标准,可确保治疗效果评估的一致性。
- 根据 CTCAE v5.0 对 AEs 进行详细监测和分级,提供了捕捉和管理患者毒性的标准化方法,这对患者安全和监管报告至关重要。
总体而言,这些程序定义明确,反映了在临床试验环境中管理晚期 RM-NPC 患者的综合方法。免疫疗法和靶向疗法的结合是一种合理的治疗策略,试验设计允许在具有挑战性的患者群体中评估这种疗法的安全性和有效性。
8-3:结果
临床试验报告的结果部分概述了用于衡量治疗方案有效性和安全性的主要和次要终点。以下是内容摘要和分析:
主要终点:
- 主要终点是获得客观应答的患者比例。
- 客观反应是根据实体瘤反应评估标准(RECIST)1.1版定义的。
- 这包括完全应答或部分应答的可测量疾病患者。
次要终点:
- 无进展生存期(PFS): 从治疗开始到疾病进展或因任何原因死亡(以先发生者为准)的持续时间。对于存活且未出现进展的患者,PFS 的测量将持续到最后一次无进展生存期评估。
- 应答持续时间(DOR): 从首次记录应答到记录疾病进展或因任何原因死亡的时间长度,仅对获得应答的患者进行评估。
- 疾病控制比例(Proportion of Disease Control): 实现完全应答、部分应答或疾病稳定的患者比例。
- 安全性: 该终点评估治疗方案的安全性,包括不良事件的发生率、严重程度和频率。
总生存期(OS):
- 定义为从开始治疗到因任何原因死亡的时间。
分析:
- 主要终点侧重于治疗的直接抗肿瘤效果,这是衡量癌症试验疗效的关键指标。
- RECIST 1.1 标准被广泛用于评估实体瘤的肿瘤反应,为评估治疗效果提供了标准化方法。
- 无进展生存期是一个重要的次要终点,通过测量疾病恶化或患者死亡(以先到者为准)的时间来反映治疗的临床疗效。
- 反应持续时间是衡量对治疗有反应的患者的疗效持续时间。
- 疾病控制不仅包括肿瘤缩小(完全或部分反应)的患者,还包括疾病保持稳定的患者,从而更广泛地反映治疗的效果。
- 安全性是一个重要的终点,因为它可以评估治疗的耐受性,并有助于平衡治疗的益处与潜在的风险。
- 总生存期是衡量治疗效果的一个明确指标,尽管在这项试验中它被视为次要终点,这可能是由于该疾病已进入晚期,而且客观反应作为更直接的疗效衡量标准受到了关注。
总之,本节所述的结果为评估临床试验结果提供了一套全面的衡量标准。主要终点侧重于肿瘤反应,次要终点包括反应的持久性、疾病进展的控制、总生存期以及治疗的安全性。这种多方面的方法可以全面评估治疗方案对铂耐药或免疫检查点抑制剂耐药 RM-NPC 患者的益处和风险。
8-4:统计分析
临床试验报告的统计分析部分介绍了确定样本量、分析数据和解释结果所使用的方法。以下是内容摘要和分析:
统计设计:
- 该试验采用了西蒙的两阶段设计,这是第二阶段试验中常用的方法,目的是在需要获得足够数据与不招募不必要患者的伦理考虑之间取得平衡。
- 这种设计允许在决定是否继续招募之前对治疗效果进行初步评估。
队列 1 统计考虑因素:
- PD-1单药治疗铂类耐药鼻咽癌的预期客观反应率(ORR)为25%。
- 该试验的目标是证明阿帕替尼和坎瑞珠单抗联合治疗的客观反应率提高到50%。
- 如果在24名患者中观察到9名以上的应答者(考虑到10%的随访损失),则认为该研究取得了积极成果。
- 第一阶段招募 9 名患者,如果在第一阶段观察到两名以上应答者,则在第二阶段增加 15 名患者。
队列 2 统计考虑因素:
- 阿帕替尼单药治疗铂类耐药鼻咽癌的ORR估计为30%,但对于PD-1受体阻断剂耐药的RM-NPC,ORR假定为20%。
- 坎瑞珠单抗和阿帕替尼联合疗法的ORR有望达到45%。
- 试验至少招募 22 名患者,第一阶段招募 10 名,如果第一阶段出现两个以上的应答,则第二阶段再招募 12 名。
- 如果 22 名入选患者中有 7 名以上出现应答,试验即被视为成功。
分析集:
- 全面分析集包括所有至少接受过一剂研究药物治疗的患者。
- 疗效分析集包括至少接受过一次基线后疗效评估的患者。
- 安全性分析集包括接受过研究药物治疗并至少接受过一次基线后安全性评估的患者。
统计方法:
- Kaplan-Meier 法用于估算反应持续时间、反应时间、无进展生存期中位数和总生存期。
- Brookmeyer-Crowley 法用于计算生存期估计值的 95% 置信区间。
- 对数-对数转换法用于计算生存率的置信区间。
- 根据患者的不同特征进行分组分析。
- 对于连续变量,采用 Mann-Whitney U 检验对有反应组和无反应组进行统计比较。
- 逻辑回归模型用于预测免疫疗法反应的单变量和多变量分析。
- Cox比例危险模型用于估算无进展生存期和总生存期的危险比。
随机化和盲法:
- 除非另有说明,该试验不采用随机方法,研究人员对治疗分配不设盲法。
软件和注册:
- 数据收集使用 EpiData 3.1。
- 统计分析使用 SPSS 22.0 版和 R 4.2.1 版。
- 该试验在 http://ClinicalTrials.gov 网站上注册,每个队列都有不同的标识符,以避免误解,便于明确。
分析:
- 这种统计设计适用于第二阶段试验,可在投入较大样本量之前对治疗的潜在效果进行初步评估。
- 当治疗效果大小不确定时,两阶段设计尤其有用,因为它可以避免在治疗无效时不必要地招募更多患者。
- 使用 Kaplan-Meier 和 Cox 回归模型是分析肿瘤试验生存数据的标准方法。
- 通过亚组分析,可以了解哪些患者群体可能从治疗中获益最多。
- 缺乏随机化和盲法可能会给结果带来偏差,不过这在以疗效为主要关注点的二期试验中很常见。
- 在 http://ClinicalTrials.gov 上将每个队列作为单独的试验进行登记是一种透明的做法,有助于向研究人员和公众阐明研究目标和方法。
总之,统计分析计划是针对试验目标精心设计的,并采用了适当的方法来确定样本量、分析数据和进行解释。尽管缺乏随机化和盲法是解释研究结果时应考虑的一个限制因素,但使用既定的统计方法确保了可以有把握地解释研究结果。
8-5:肿瘤样本的采集和制备
内容介绍了鼻咽癌(NPC)患者为研究目的收集和准备肿瘤样本的过程。以下是内容摘要和分析:
肿瘤样本采集:
- 从鼻咽癌患者身上获取新鲜的肿瘤活组织切片。
- 样本采集是在患者知情同意的情况下进行的。
样本分割:
- 每个活检样本分为两部分,以便进行不同类型的分析。
快速冷冻以进行RNA测序:
- 将活检样本的一部分立即放入液氮中。
- 在液氮中快速冷冻对保持对降解敏感的 RNA 的完整性至关重要。
- 这些样本将用于随后的 RNA 测序,这种技术可以分析转录组,提供有关基因表达和潜在生物标志物的信息。
石蜡包埋和切片染色:
- 活检的另一部分被嵌入石蜡中。
- 石蜡包埋是保存组织样本的一种标准方法,可长期保存并易于处理。
- 嵌入的组织切片用于进一步分析。
- 这些切片用于免疫组化染色和多重免疫荧光染色。
- 免疫组化(IHC)是一种用于观察组织样本中特定蛋白质的技术,可提供有关生物标记物存在和分布的信息。
- 多重免疫荧光染色可使用荧光染料观察同一组织切片中的多个目标,从而加深对肿瘤微环境和细胞相互作用的了解。
分析:
- 肿瘤样本的采集和制备是分子肿瘤学研究的关键步骤,因为它们为各种分析提供了必要的材料。
- 使用新鲜样本是进行 RNA 测序的理想选择,因为它能最大限度地降低 RNA 降解的风险,而如果样本处理和储存不当,则可能发生这种情况。
- 将样本分为不同的保存方法(快速冷冻用于 RNA,石蜡包埋用于 IHC 和免疫荧光)可对肿瘤生物学进行全面分析。
- 患者的知情同意确保了研究的道德性和对患者权利的尊重。
- 所述方法是转化研究的标准方法,对于了解肿瘤的分子特征至关重要,可为诊断、预后和治疗决策提供依据。
总之,收集和制备肿瘤样本用于 RNA 测序和免疫染色是肿瘤学转化研究的关键组成部分。通过这些方法,研究人员可以研究肿瘤的基因和蛋白质表达谱,为了解鼻咽癌的生物学特性提供有价值的信息,并有可能改进诊断和治疗策略。
8-6:提取 RNA 和 RNA 序列
内容介绍了从速冻肿瘤标本中提取 RNA 和 RNA 测序的过程。以下是内容摘要和分析:
RNA提取:
- 从速冻肿瘤标本中提取总 RNA。
- 使用纳米光度计(NanoPhotometer)分光光度计检测 RNA 的质量和纯度,该仪器测量 RNA 溶液对光的吸收率,以评估其浓度和纯度。
- 使用 RNA Nano6000 检测试剂盒和 Bioanalyzer 2100 系统评估 RNA 的完整性,该系统可提供有关 RNA 分子大小和完整性的信息。
RNA 样品制备:
- 每个样本使用 1 µg RNA 作为 RNA 样品制备的输入材料。
- 使用用于 Illumina® 的 NEBNext® UltraTM RNA 文库制备试剂盒生成测序文库,该试剂盒可将 RNA 转化为适合在 Illumina 平台上测序的格式。
- 该试剂盒可将 RNA 转化为适合 Illumina 平台测序的格式。索引代码被添加到每个样本的序列属性中,从而实现多路复用,即在同一运行中对多个样本进行测序,然后在数据分析过程中根据其独特的索引序列进行分离。
cDNA合成和文库制备:
- 纯化的 mRNA 被随机片段化,并用作反转录合成双链 cDNA 的模板。
- 选择约 200 碱基对 (bp) 的 cDNA 片段,并使用 AMPure XP 珠和 Agilent Bioanalyzer 2100 系统进行纯化,以确保文库的质量。
- 使用 TruSeq PE Cluster Kit v3-cBot-HS 在 cBot Cluster Generation 系统上对索引编码样本进行聚类,该系统通过在流动池上扩增和创建聚类来准备测序文库。
测序:
- 文库制备在高通量测序系统 Illumina Novaseq 平台上进行测序。
- 测序产生了 150 bp 的成对末端读数,这意味着测序从每个 DNA 片段产生了两个各 150 bp 的片段,从而可以更准确地比对和分析序列数据。
分析:
- 所述过程遵循 RNA 提取和测序的标准协议,这是转录组学研究的关键步骤。
- 使用速冻样本有助于保持 RNA 的完整性,这对获得可靠的测序数据至关重要。
- 质量控制步骤(如检查 RNA 纯度和完整性)对于确保提取的 RNA 适合测序非常重要。
- NEBNext 试剂盒和 Illumina 平台因其可靠性和稳健性在该领域得到广泛应用。
- 添加索引代码和使用成对末端读数是测序的最佳实践,有助于提高所获数据的准确性和深度。
- Illumina Novaseq 平台能够进行高通量测序,有利于高效处理多个样本。
总之,从肿瘤标本中提取 RNA 并进行测序涉及多个步骤,需要认真执行,以确保数据的质量和完整性。这些数据对于了解肿瘤的基因表达谱至关重要,可以帮助人们深入了解癌症的分子机制和潜在的治疗靶点。
8-7:RNA-seq 数据处理和质量检查
内容介绍了 RNA-seq 数据的处理和质量检查。以下是内容摘要和分析:
RNA-seq数据处理:
- 原始数据(原始读数)处理: 通过内部 perl 脚本处理 fastq 格式的原始数据。Fastq 格式通常用于存储高质量的序列数据,而 perl 脚本则用于处理和操作基于文本的数据。
- 质量控制: 对处理后的数据进行质量指标检查,包括 Q20、Q30 和 GC 含量。Q20 指的是质量分数在 20 分或以上的碱基百分比,表示出错的可能性较低。Q30 与之类似,但质量分数为 30 或更高。GC 含量是指序列数据中鸟嘌呤和胞嘧啶碱基的百分比。这些指标用于评估测序数据的质量。
参考基因组和基因模型注释:
- 参考基因组和基因模型注释文件从基因组网站下载。
- 这些文件提供了解读测序数据的必要信息,包括基因、转录本和其他基因组特征的位置。
清洁读数与参考基因组的比对:
- Hisat2 v2.0.5用于建立参考基因组索引,并将成对末端纯净读数与参考基因组进行比对。
- Hisat2 是一种高精度、高效率的软件工具,用于将 RNA-seq 读数与参考基因组进行比对。配对端读数可精确确定原始 RNA 序列在参考基因组中的位置。
分析:
- 使用内部 perl 脚本进行数据处理是生物信息学的常见做法,因为 perl 是一种处理文本数据的强大语言。
- Q20、Q30 和 GC 含量的质量检查对于确保测序数据的质量足以进行下游分析非常重要。
- 参考基因组和基因模型注释文件对于解读测序数据和确定肿瘤样本中表达的基因和转录本至关重要。
- 选择 Hisat2 作为比对工具非常适合 RNA-seq 数据,因为它在将短读数与大基因组比对方面的准确性和效率是众所周知的。
总之,RNA-seq 数据的处理和质量检查涉及多个步骤,以确保数据的干净、准确和可解释性。质量控制指标、参考基因组注释和高效比对工具的使用有助于提高数据的可靠性和下游分析的有效性。
8-8:基因表达定量和归一化
该内容介绍了使用 featureCounts 和 FPKM(每百万映射读数的每千碱基转录本片段)进行基因表达量化和归一化的过程。以下是内容摘要和分析:
基因表达定量:
- FeatureCounts v1.5.0-p3: 该软件工具用于计算 RNA-seq 数据中映射到每个基因的读数数量。
- 读数计数是与特定基因或转录本对齐的测序读数的原始数量。它们可以直接衡量样本中该基因的丰度。
FPKM 计算:
- 然后使用 FeatureCounts 工具的输出结果计算每个基因的 FPKM(每百万映射读数每千碱基转录本片段数)。
- FPKM 是一种计量单位,通过考虑基因的长度和测序深度使基因表达水平正常化。
- 计算方法是将映射到基因上的总读数除以基因长度(千碱基),再除以映射读数总数(百万)。
- FPKM 对基因长度的差异进行归一化处理,从而更准确地衡量不同测序深度样本的基因表达情况。
归一化注意事项:
- FPKM 指标是目前从 RNA-seq 数据中估计基因表达水平最常用的方法之一。
- 它考虑了测序深度和基因长度,是一种稳健的基因表达测量方法,可在不同样本和平台间进行比较。
分析:
- 在 RNA-seq 数据分析中,使用 FeatureCounts 是计算读数和估计基因表达水平的标准做法。
- 计算 FPKM 是分析过程中的一个关键步骤,因为它提供了基因表达的规范化测量方法,对比较不同样本更有意义。
- 当目标是比较不同样本或条件下的基因表达水平时,FPKM 尤其有用,因为它有助于调整不同测序深度和基因长度带来的偏差。
总之,对 RNA-seq 数据中的基因表达进行量化和归一化是分析过程中的一个基本步骤。使用 FeatureCounts 进行读数计数和 FPKM 计算可确保数据得到适当的归一化,并确保结果可在不同样本和条件下进行解释。这对于从测序数据中得出准确的生物学推论至关重要。
8-9:确定 DEGs
内容介绍了从 RNA-seq 数据中识别差异表达基因(DEG)。以下是内容摘要和分析:
差异表达分析:
- 差异表达分析使用 DESeq2 R 软件包(1.16.1 版)进行。
- DESeq2是一个广泛使用的R软件包,用于数字基因表达数据的统计分析。它提供了基于负二项分布模型确定两个条件或组间差异表达的例程。
- 之所以选择负二项分布,是因为与标准泊松分布相比,负二项分布更适合 RNA-seq 数据,尤其是在过度分散(即方差大于均值)的情况下。
P值调整:
- DESeq2 得出的 P 值使用 Benjamini 和 Hochberg 方法进行调整。
- 这种方法是一种控制虚假发现率(FDR)的方法,即被宣布为 DEG 的基因中并非真正 DEG 的比例。通过调整 P 值,研究人员旨在减少假阳性的数量。
差异表达的阈值:
- 调整后的 P 值小于 0.05 的基因被视为差异表达基因。
- 将 P 值阈值设定为 0.05 是统计分析中的常见做法,通常用作确定统计显著性的临界值。
分析:
- 使用 DESeq2 适合分析 RNA-seq 数据,因为它是专门为这类数据设计的,并考虑了可能影响数据的生物和技术因素。
- Benjamini 和 Hochberg 方法是控制 FDR 的标准方法,对于减少像 RNA-seq 这样的高维数据集的假阳性数量非常重要。
- 0.05 的 P 值阈值是许多领域(包括遗传学和肿瘤学)公认的统计学显著性阈值。
总之,从 RNA-seq 数据中识别 DEGs 需要使用 DESeq2(一个专门的 R 软件包)进行统计分析。分析数据是为了确定哪些基因在两种情况或两组之间存在表达差异。为减少错误识别 DEG 的几率,使用 Benjamini 和 Hochberg 方法调整 P 值,并采用 0.05 的严格 P 值阈值。这种方法有助于确保识别出的 DEGs 可能是真正的生物学差异,而不是随机机会。
8-10:使用 MCP 计数器对细胞成分进行解分辨
内容介绍了如何使用 MCP-counter R 软件包从 RNA-seq 数据中解卷细胞组成。以下是内容摘要和分析:
解卷积细胞组成:
- MCP-counter R软件包用于分析归一化对数2转换的FPKM(每百万映射读数每千碱基转录本片段)表达矩阵。
- MCP-counter 是一款用于从基因表达数据中估算细胞类型绝对丰度的工具。它通过使用一种考虑了细胞特异性基因表达特征的模型来实现这一目的。
- 归一化对数 2 转换的 FPKM 矩阵代表了不同样本中基因的相对表达水平。通过这种方式转换数据,MCP-counter 可以对数据进行解卷积,从而估算出样本中每种细胞类型所占的比例。
分析的细胞类型:
-
分析的重点是八种主要的免疫细胞类型:
-
CD19 + B 细胞
-
CD8 + T 细胞
-
CD4 + T 细胞
-
此外,上皮细胞和成纤维细胞也包括在解卷积中。
解卷积图谱:
- 为每个样本生成解卷积图谱,提供所分析的每种细胞类型的绝对丰度得分。
- 这些剖面图提供了每个样本细胞组成的详细分类,可用于识别可能存在代表性过高或缺乏的细胞类型。
分层聚类和比较:
- 对解卷积图谱进行分层聚类,将细胞组成相似的样本归为一组。
- 这种聚类有助于识别数据中的模式,如不同治疗组或反应类型之间的相似性。
- 比较不同组间的聚类结果,可以深入了解治疗对肿瘤细胞组成的影响。
分析:
- 使用 MCP-counter 是对 RNA-seq 数据进行去卷积以推断细胞组成的一项强大技术。
- 对数据进行归一化处理并使用对数2转换的FPKM值,有助于考虑样本间测序深度和基因表达水平的差异。
- 解卷积在癌症研究中尤为重要,因为它能揭示肿瘤内免疫细胞组成和其他细胞类型的变化,从而对预后和治疗反应产生影响。
- 比较不同反应和治疗组的解卷积图谱,可以深入了解治疗对肿瘤微环境的影响,并有可能指导个性化医疗策略的开发。
总之,利用 MCP-counter 从 RNA-seq 数据中对细胞组成进行解卷积是了解肿瘤免疫细胞和基质细胞组成的重要工具。这些信息有助于开发更具针对性的疗法和预测患者对治疗的反应。
8-11:通路富集分析
该内容介绍了对治疗有反应者和无反应者的大量组织 RNA-seq 数据中的差异表达基因 (DEG) 进行的通路富集分析。以下是内容摘要和分析:
通路富集分析:
- 对从大块组织 RNA-seq 数据中识别出的 DEGs 进行了基于网络的通路富集分析。
- 该分析旨在**找出与 DEGs 显著富集的生物通路**,表明这些通路参与了治疗反应的生物过程。
DEG选择:
-
DEGs 的选择基于两个标准:
-
q 值(调整后的 P 值)小于 0.05,表明两组之间的表达存在显著差异。
-
对数 2 转换后的折叠变化大于 1.5 或小于-1.5,表明表达水平发生了实质性变化。
-
这些标准有助于确保确定的 DEGs 具有稳健性和生物学意义。
分析:
- 使用基于网络的通路富集分析是系统生物学中了解生物过程潜在分子机制的常用方法。
- 基于网络的方法考虑到了通路中基因和蛋白质之间的关系,提供了有关生物过程的更全面的视图。
- 0.05 的 q 值临界值和 1.5 倍或 2 倍的折叠变化标准是基因表达分析中常用的阈值,用于确定变化的统计意义和生物学相关性。
意义:
- 对大块组织 RNA-seq 数据中的 DEGs 进行通路富集分析,有助于确定与治疗反应相关的生物通路。
- 这些通路可能是个性化医疗策略或开发新治疗方法的潜在靶点。
- 分析结果还能让人们深入了解治疗产生效果的分子机制,从而更好地理解疾病的生物学特性。
总之,内容中描述的通路富集分析是了解癌症患者治疗反应分子基础的有力工具。通过识别应答者和非应答者 DEGs 中的富集通路,该研究可以深入了解改善治疗和个性化医疗方法的潜在靶点。
8-12:免疫组化和多重免疫组化染色
内容介绍了对鼻咽癌(NPC)患者的福尔马林固定、石蜡包埋(FFPE)肿瘤组织以及转移至肝脏、肺部和淋巴结的肿瘤组织进行免疫组化(IHC)和多重免疫组化染色的过程。以下是内容摘要和分析:
免疫组化(IHC):
- 对来自鼻咽癌患者和转移灶的 FFPE 肿瘤组织进行了一项回顾性研究。
- 对 FFPE 块状肿瘤组织的 4 μm 切片进行了 IHC 染色。
- 切片脱蜡后用 10%中和甲醛固定。
- 使用加热的 Tris-EDTA 缓冲液(pH 8.0 或 pH 9.0)进行抗原回收 2.5 分钟。
多重免疫组化染色:
- 在优化每种一抗的染色条件后,进行四轮连续的抗体染色。
- 每个染色步骤包括用 20% 的正常山羊血清/胎牛血清在 PBS 中阻断、一抗孵育以及随后的生物素化抗小鼠/抗兔二抗。
- 用 1×Plus Amplification Diluent 稀释的荧光团 Opal 480、520、570 和 690 进行酪胺信号放大(TSA),使免疫反应染色可视化。
- 在加热的 Tris-EDTA 缓冲液(pH 8.0 或 pH 9.0)中剥离抗体-TSA 复合物 2.5 分钟。
- 用 4′,6-二脒基-2-苯基吲哚二盐酸盐(DAPI)对细胞核进行反染,并用 PermaFluor 荧光装片剂(PANOVUE)对切片进行装片。
- 还进行了不含一抗的阴性对照。
所用抗体:
- 用于IHC染色的抗体包括CD4(ZM-0418,ZSbio,克隆:EP204)、CD19(ZM-0038,ZSbio,克隆:UMAB103)、CD8(ZA-0508,ZSbio,克隆:SP16)、CD3(ZM-0417,ZSbio,克隆:LN10)、Eomes(ab183991,Abcam,1: 200)、α-SMA(ab7817,Abcam,1 μg/mL)、KDR(ab2349,Abcam,1:100)、PD-L1(ab205921,Abcam,2 μg/mL)、CD31(ab28364,Abcam,1: 50)、IL8(94407 T,Cell Signaling Technology,1:100)、VEGFA(ab52917,Abcam,1:100)、c-KIT(ab32363,Abcam,1:400)和 SRC(ab109381,Abcam,1:400)。
细胞定量
- 使用 Halo 分析软件 (PANOVUE) 对整个肿瘤切片进行**细胞定量**。
- 该软件用于自动识别细胞亚群,并根据细胞亚群数量的百分比进行计数。
分析:
- 所述 IHC 和多重 IHC 染色过程是组织病理学中用于检测和量化肿瘤样本中特定生物标记物和细胞类型的标准技术。
- 在一次染色过程中使用多种抗体(多重 IHC)可同时检测多个目标,从而更全面地了解肿瘤微环境。
- 染色条件的优化和信号放大技术的使用确保了染色的敏感性和特异性。
- 使用 Halo 分析软件进行自动细胞定量是一项节省时间的技术,它降低了人为失误的可能性,提高了数据收集的效率。
- 抗体的选择针对一系列与鼻咽癌和转移性疾病相关的细胞类型和分子标记物,包括免疫细胞、血管细胞和上皮细胞。
总之,内容所述的免疫组化和多重免疫组化染色可对肿瘤微环境进行详细和多方面的分析。使用 IHC 和多重 IHC 技术可以检测和量化各种类型的细胞及其相关蛋白,从而深入了解肿瘤内的生物过程。自动细胞定量进一步提高了所收集数据的准确性和可靠性。对鼻咽癌及其转移瘤的研究对于了解疾病的进展和潜在的治疗目标至关重要,而所述方法对这些工作大有裨益。
8-13:TLS 定量
内容介绍了使用苏木精和伊红(H&E)染色以及 CD19(B 细胞)和 CD3(T 细胞)免疫组化(IHC)染色对肿瘤样本中的肿瘤淋巴细胞间距(TLS)进行量化的方法。以下是内容摘要和分析:
肿瘤-淋巴细胞间隙(TLSs)的鉴定和定量:
- TLSs是肿瘤内淋巴细胞聚集的区域,形成的结构与正常免疫系统中的结构相似。
- 这些空间是肿瘤微环境的重要特征,可帮助了解肿瘤的免疫反应。
H&E染色:
- H&E染色是一种标准的组织学技术,用于观察组织样本的细胞结构。
- 它通常与其他染色方法结合使用,以鉴定和描述TLS。
免疫组织化学(IHC)染色:
- 对 CD19 和 CD3 进行 IHC 染色,以特异性识别肿瘤样本中的 B 细胞和 T 细胞。
- 这些标记物用于区分不同类型的淋巴细胞,提供有关 TLS 内免疫细胞组成的信息。
量化标准:
- 本研究采用 TLS 的平均面积作为量化标准。
- 面积测量能让人了解 TLS 的大小和范围,这可以说明肿瘤内免疫细胞的浸润和活动情况。
分析:
- 使用 H&E 和 IHC 染色可对 TLS 进行全面分析。
- H&E 染色可提供肿瘤组织学特征的总体视图,而 IHC 染色则可具体确定存在的淋巴细胞类型。
- 根据平均面积量化 TLS 是评估这些结构的空间分布和大小的一种简单而常用的方法。
- 通过测量平均面积可以了解肿瘤的免疫微环境,从而对治疗反应和预后产生影响。
总之,使用 H&E 和 IHC 染色法量化肿瘤样本中的 TLS 是了解肿瘤内免疫反应的重要工具。通过识别和量化 TLS,研究人员可以深入了解导致肿瘤进展的生物过程以及治疗对免疫系统的潜在影响。