CLAM:基于全幻灯片图像的数据高效和弱监督的计算病理学

CLAM:基于全幻灯片图像的数据高效和弱监督的计算病理学

前提知识:

MIL多示例学习:

CLAM处理的是多分类问题,对于输入的WSI图,根据它的形态学特征可以分为N个类别,一张WSI图只能属于其中的一个类。(比如WSI图共有三个类别:a b c,一张WSI只属于a b c中的一类)。若一张WSI图属于某一类,则这个WSI图的所划分出来的所有patch都属于这一类。

CLAM模型的流程解释:

a:

  1. 对原始WSI图像进行语义分割,去掉背景
  2. 对取出来的这个图像划分成M个Patch(每个patch256*256pixels)

b:

  1. 对于每个patch,逐个输入到ResNet50中,进行特征提取,降维,输出一个xx维度的向量z_k
  2. 对于(1)输出的向量,使其输入一个Attention backbone,输出对这个向量的attention评分
  3. 因为共有M个patch,所以(2)输出有M个向量,attention backbone还将这M个向量分成N个类,进入了N条分支。这N个类中有一类是原始WSI所属的类。
  4. 对于每个分好了类别的patch,最终将经过一系列“操作”,输出一个向量s,这个向量s有 N维,代表了每个patch所代表的类跟真实标签之间的关系轻重度。最终这个向量s再经过一个“操作”,根据已知s来预测这个WSI图的标签。最终这个预测的WSI标
### CLAM多分类实现方法 对于CLAM(Compositional Learning of Aggregated Multimodal features),该框架设计用于处理切片图像(WSI)的弱监督学习问题,在多分类场景下,CLAM能够有效地利用实例级别的注意力机制来聚合局部特征形成局表示。具体来说,为了支持多类别分类任务,CLAM采用了两步策略: 1. **实例级别注意模块**:此部分负责计算单个patch的重要性得分,从而允许模型聚焦于最具代表性的区域。通过这种方式,即使面对复杂的病理样本也能提取出关键信息[^1]。 2. **包级别预测网络**:经过加权求后的整体表征会被送入一个多层感知机(MLP),进而完成最终的类别判定工作。值得注意的是,这里的输入不仅包含了来自不同模态的数据融合结果,还包括了由前一阶段产生的注意力权重向量作为辅助信息,有助于提高决策过程中的可解释性准确性[^4]。 ```python import torch.nn as nn class MultiClassCLAM(nn.Module): def __init__(self, num_classes=3): # 设定为三类为例 super(MultiClassCLAM, self).__init__() # 定义实例级特征编码器... self.instance_encoder = InstanceEncoder() # 注意力池化层... self.attention_pooling = AttentionPooling() # MLP分类头 self.classifier_head = nn.Sequential( nn.Linear(in_features=..., out_features=...), # 输入维度需根据实际情况调整 nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(in_features=..., out_features=num_classes) ) def forward(self, patches): instance_features = self.instance_encoder(patches) # 获取每个patch对应的特征向量 global_representation, attention_weights = self.attention_pooling(instance_features) logits = self.classifier_head(global_representation) return logits, attention_weights ``` ### 应用场景 CLAM架构特别适用于那些难以获得大量标注数据的情况下的医学影像分析任务。例如,在肾细胞癌(RCC)、非小细胞肺癌(NSCLC)以及淋巴结转移检测等领域内,由于高质量标签获取成本高昂且耗时较长,因此采用此类弱监督技术可以显著降低对大规模精细标记的需求。此外,得益于其良好的泛化性能,经训练好的CLAM模型还能较好地适应未曾见过的新数据源,这使得它成为跨机构协作研究的理想工具之一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值