空间转录组学赋能病理研究,助力医学AI精准诊疗突破|顶刊精析·25-02-28

小罗碎碎念

高分辨率空间转录组学(ST)技术作为新兴手段,可在亚细胞分辨率下数字化完整组织切片中的基因表达。

高分辨率空间转录组学(ST)主要分为基于成像和基于测序的方法,前者通过探针杂交检测转录本,后者对转录本进行空间标记和测序。凭借这些技术,能够构建组织图谱、揭示疾病机制、辅助个性化治疗,还可拓展转录组覆盖范围、实现多模态分析,为病理学研究提供关键支持 。

全切片成像技术助力病理切片数字化,结合相关数据构建的大规模数据集为深度学习模型训练创造了条件。目前,深度学习算法虽能对数字化H&E图像进行多种分析预测,但准确性低于免疫组化,且批量RNA测序数据的局限性影响了预测精度与可解释性。低分辨率空间转录组学与H&E图像联合分析,可优化模型。

H&E组织学仍是临床诊断的核心,但分子标志物应用受限。高分辨率空间转录组学数据集能建立基因表达与形态学的空间联系,为训练下一代深度学习模型提供关键资源,有望实现低成本的分子诊断普及,推动精准医疗发展

未来,结合多模态数据的深度学习框架将推动病理学从形态描述向预测模式转变,为可负担的分子数字化病理学发展奠定基础。


知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!


一、背景

显微成像技术自19世纪以来已成为病理学研究的核心工具,其单细胞分辨率分析能力为揭示组织架构与疾病机制的关系奠定了基础。

Rudolf Virchow等学者通过对健康与病变组织的早期空间研究,阐释了细胞生态系统动态变化在疾病发生中的作用(1)。尽管组织形态学分析至今仍是疾病诊断、预后评估及治疗决策的关键依据,但将组织架构与功能异常直接关联仍存在挑战。

随着2003年人类基因组计划完成(2),分子生物学技术的进步推动了高通量检测方法的发展,尤其是下一代测序(NGS)技术,其在肿瘤分子分型、精准治疗及副作用控制中的应用显著提升了临床实践水平(3)。

然而,传统批量测序技术无法解析细胞异质性,限制了其对临床复杂疾病异质性的解析能力。


单细胞组学技术的兴起为解决上述问题提供了新途径。

该技术通过基因组、表观遗传组和转录组的多维度分析,实现了对细胞异质性、稀有细胞类型及动态表型状态的精准刻画(4-5),并能够重构发育、稳态及疾病状态下的细胞轨迹(6)。

例如,LifeTime倡议利用单细胞技术追踪细胞从健康向疾病状态的转变,旨在实现复杂疾病的早期干预(7)。然而,单细胞技术的临床转化仍受限于组织解离过程导致的细胞损耗、应激反应激活(8-9)以及空间信息丢失。

尽管基于新鲜冷冻(FF)(10-11)或福尔马林固定石蜡包埋(FFPE)样本的单核提取技术为活细胞分离提供了替代方案(12),其空间解析能力的缺失仍阻碍了对细胞间相互作用及组织功能调控机制的研究(13)。

此外,依赖转录组相似性假设的空间重构算法在疾病导致组织结构破坏时可能失效(14-16),进一步凸显了保留原位空间信息的重要性。


空间组学技术的突破为整合组织学与分子组学提供了新方向。

高分辨率空间转录组学(ST)技术可在亚细胞水平解析数十亿转录本,系统性揭示临床样本中细胞间相互作用网络及疾病相关分子表型(17-19)。

与低分辨率ST方法不同(20-21),高分辨率技术直接兼容FFPE样本,支持对存档临床队列的回顾性分析及治疗反应的纵向研究,加速了其临床转化进程。

病理学领域因已具备标准化组织处理流程,有望成为空间组学临床应用的首个突破口。早期临床前研究已证明高分辨率ST在指导机制导向的个性化治疗、识别新靶点及深化组织生物学认知方面的潜力(22-23)。


然而,空间组学的广泛应用仍需克服多重挑战。

大规模临床研究亟需验证空间生物标志物与预后的关联性,并需解决技术标准化、数据分析复杂性及成本效益等问题。

值得注意的是,细胞转录组与形态学数据的数字化为深度学习算法训练提供了多模态数据资源,使得从常规H&E图像预测空间生物标志物成为可能。这一方向不仅可提升分子疗法在全球范围内的可及性,还将揭示组织形态特征与基因表达模式的关联,深化对组织结构-功能关系的理解(24)。

未来研究需进一步探索计算模型的可解释性及临床转化路径,以推动空间组学在精准医学中的全面应用。


二、空间高分辨率定量转录本

空间高分辨率定量转录本技术主要分为基于成像和基于测序两种方法。

基于成像的方法依赖于探针杂交技术,其探针设计需预先了解目标序列信息,通常由商业平台提供预设计或定制化服务。

检测过程通过原位杂交或原位测序实现:前者如Cai实验室的seqFISH(23)、Zhuang实验室的MERFISH(现为Vizgen的MERSCOPE)(24)、NanoString Technologies的CosMx Spatial Molecular Imager(25)以及Resolve Biosciences的Molecular Cartography;

后者如Nilsson实验室的CARTANA(现为10x Genomics的Xenium In-Situ)(26)、Wang、Nolan和Deisseroth实验室的STARmap(27)。

这些技术通过特异性探针结合或原位测序反应,实现对目标转录本的定位与定量分析。


基于测序的空间转录组学(ST)方法则基于转录本的局部捕获与空间条码编码技术,结合下一代测序(NGS)解码基因身份及其空间坐标。

代表性技术包括Lundeberg、Ståhl和Reffen实验室开发的高清ST(28)、Fan实验室的DBiT-Seq(29)、Chen和Macosko实验室的Slide-seq(现为Curio Bioscience的Curio Seeker)(30)、BGI的Stereo-seq(现为STOmics)(31)、10x Genomics的Visium HD、Lee实验室的Seq-scope(32)以及Open-ST(33)。

此类方法通常采用含polyT链的点阵结构捕获mRNA,通过酶促渗透化释放组织切片中的转录本,并利用polyA尾杂交实现定位。

文库制备过程中,转录本序列与空间条码被整合至同一分子,使得高通量NGS可同时解析数十亿转录本的身份与空间信息。


数据预处理方面,基于测序与成像的方法均需通过计算流程生成转录本-位置矩阵。

商业平台通常配套专有分析软件,而研究社区开发的开放流程(如基于成像数据的Starfish(34)或基于测序数据的Spacemake(35))则支持定制化分析。

从技术特性来看,基于测序的方法能够捕获所有多腺苷酸化转录本,适用于无偏假设生成;而基于探针的成像方法虽检测效率更高,但受限于预设基因面板,更适用于靶向假设验证。

两者的选择需权衡研究目标、样本类型及数据通量需求,其具体优势与局限性将在后续章节详细探讨。


三、从转录本到细胞表型

空间转录组学(ST)数据分析的核心步骤是将定量转录本与细胞表型关联。

首先,通过高分辨率组织图像结合深度学习工具(如Cellpose(36))进行细胞分割

核、细胞质及膜特异性标记物(如DAPI、rRNA及Na+/K±ATPase)的免疫染色可增强细胞边界识别精度。

在基于成像的方法中,显微镜设置便于组织图像与转录本检测结果精确对齐;而基于测序的方法需在组织渗透化前独立获取图像,并通过条码点进行空间匹配,可能引入对齐误差(37)。

替代策略包括将转录本分组为细胞大小伪空间单元(如10 µm²伪细胞)或利用转录组学数据直接进行分割(如Baysor(37))。


数据质量控制阶段需剔除低质量细胞,可通过设置经验性阈值(如最小检测基因数)或应用去噪算法(如STARLING(38))实现。

基于成像的ST技术还可通过阴性探针(靶向外源序列)和系统控制(未列入白名单的条码)检测非特异性结合及图像解码错误(39)。

单细胞聚类分析可识别分子表型异质性,并通过基因表达标记注释细胞类型与状态,其流程与单细胞RNA测序(scRNA-seq)共享标准化分析框架(40)。

然而,ST数据特有的偏差(如细胞分割误差或转录本位移)需开发专用计算工具(如Voyager(41))进行校正。


预处理后的数据集基于细胞空间坐标存储及分析,目前虽存在可扩展文件格式(如STOmicsDB(42))支持数据管理,但统一的生态系统与标准化实践仍需完善。

交互式可视化工具的研发尤为关键,其需整合细胞形态、单转录本定位及注释信息(如图1所示),以助力病理学家在临床场景中验证与探索ST数据。

这张图片展示了利用分子显微镜探索临床样本的相关内容。

主要概念及解释

  • Routine histology(常规组织学):图中左上角展示了常规组织学染色的组织切片图像,通常用于观察组织的基本结构。
  • Morphological annotations(形态注释):中间上方图像是对组织形态的注释,帮助区分不同的组织区域。
  • Digital molecular histology(数字分子组织学):右上角图像结合了分子信息与组织形态,通过数字化的方式呈现基因表达等分子特征。
  • Cellular morphology(细胞形态):左下角图像聚焦于细胞层面的形态观察。
  • Transcript mapping(转录本映射):中间下方图像展示了在亚细胞分辨率下,数百万转录本的映射情况,不同颜色表示不同基因。
  • Molecular clusters(分子簇):右下角图像通过不同颜色显示不同的转录组簇,用于无偏地识别细胞类型和状态。

总结

高分辨率空间转录组学方法如同分子显微镜,能够在完整的组织切片中数字化基因表达和组织形态,便于对组织分子特征进行交互式探索,并与病理学家的注释进行比较。

底部一行图像展示了从组织图像中进行细胞分割,并结合转录本映射来识别细胞类型和状态的过程 。


四、从单细胞到虚拟组织块

高分辨率空间转录组学(ST)数据集的单细胞坐标信息为超越单细胞RNA测序(scRNA-seq)的独特分析提供了基础。

此类分析涵盖以下维度:

  • (a)解析细胞类型及其分子状态的空间分布模式
  • (b)定义多细胞生态位内细胞类型与分子状态的组织架构
  • (c)探究局部邻域中受体-配体介导的细胞间通讯网络

尽管目前已开发超过100种计算工具用于映射细胞间相互作用(43),该领域仍需建立标准化分析方法以支撑临床转化应用。


尽管二维切片分析可提供重要信息,但细胞在三维空间内的动态行为对疾病机制具有更深刻的生物学意义。

通过专用算法(如STIM(44)和PASTE(45))对连续切片的分子与形态学数据进行计算对齐,可重构三维虚拟组织块(图2)。

此类三维模型整合x、y、z坐标信息,能够识别立体多细胞生态位并绘制三维受体-配体互作网络,从而揭示二维分析中易被忽略的生物学特征,例如肿瘤侵袭边界的关键基因表达程序(33, 46)。

这种三维视角为解析疾病的空间异质性及微环境动态调控提供了更全面的研究框架。

这张图片主要介绍了通过高分辨率空间转录组学方法在二维和三维虚拟组织块中研究组织架构。

主要内容解释

  • a部分:展示了二维多细胞微环境(Multicellular niches in 2D)以及二维环境中的细胞间通讯(Cell - cell communication in 2D)。不同颜色表示不同的微环境,细胞间通讯通过配体(Ligand)从发送细胞(Sender cell)传递到接收细胞(Receiver cell)上的受体(如Receptor 1和Receptor 2)来体现。
  • b部分:呈现了三维多细胞微环境(Multicellular niches in 3D)和三维环境中的细胞间通讯(Cell - cell communication in 3D)。同样,不同颜色表示不同微环境,细胞间通讯通过颜色梯度表示相邻细胞中受体 - 配体共表达功能的相互作用强度。
  • c部分:介绍了二维和三维虚拟组织块(Virtual tissue blocks in 2D and 3D),通过空间转录组学成像框架(STIM,Spatial Transcriptomics Imaging Framework)对连续的二维切片进行计算对齐,生成处理后的切片堆叠,再进行三维渲染,以研究基因(如Gene A和Gene B)在组织中的情况。

总结

高分辨率空间转录组学方法有助于研究组织架构,分析细胞微环境的组成可以揭示细胞在多细胞微环境中的生存方式以及受体 - 配体相互作用如何协调细胞间通讯。

同时,通过对二维切片的计算对齐可以重建和探索三维虚拟组织块。


五、应用

尽管高分辨率空间转录组学(ST)方法仍处于起步阶段,但它们已成功用于构建复杂健康和疾病组织的图谱(补充表1)。

得益于对细胞间相互作用和细胞表型的系统映射,高分辨率ST方法能够在原位识别驱动疾病过程和治疗反应的协调性细胞响应。

高分辨率ST能够在临床样本中精确定位活跃的疾病机制,为基于机制的个性化治疗铺平了道路(图3)。

这张图片展示了高分辨率空间转录组学(ST)方法的临床应用流程

  1. 样本采集:患者前往细胞医院,可采集前瞻性或回顾性患者样本。
  2. 样本处理:样本通过福尔马林固定石蜡包埋(FFPE)或新鲜冷冻(FF)方式保存,然后切片,利用基于成像或测序的空间转录组学(ST)方法进行分析。
  3. 数字分子组织学:将组织形态和基因表达在亚细胞分辨率下数字化,对比常规组织学和空间转录组学的呈现方式。
  4. 诊断流程:将提取的信息与大规模数据库和已知疾病机制进行对比分析。
  5. 分子引导的个性化治疗:利用空间生物标志物和确定的机制,进行风险分层,实现基于机制的靶向治疗。
  6. 空间驱动的创新:通过多模态组织分子分析、人工智能驱动的数据分析等,发现新机制和药物靶点。

同时,高分辨率ST能够识别新的疾病机制,从而引领新的治疗靶点。

除了映射基因表达,高分辨率ST还能够量化非编码基因和转录本异构体,在组织空间中映射细胞克隆和微生物,并结合其他组学数据,深化我们对组织生物学的理解。

最后,将组织分子特征数字化,有助于病理学下一代预测模型的建立


六、构建复杂组织的细胞和分子图谱

构建复杂组织的细胞与分子图谱是现代医学研究的重要方向,其核心目标是通过整合单细胞多组学与高分辨率空间转录组学(ST)技术,系统解析器官的三维分子与细胞架构

解剖学与组织学图谱作为区分生理变异与病理改变的基准框架,在标准化数据解释、临床沟通及教育中具有不可替代的作用(47-48)。

然而,人体包含约37万亿个细胞,其分子异质性与空间关系的全面映射需依赖高通量技术的系统性应用,这一挑战正由国际研究社区共同应对。


以大脑为例,其细胞类型的多样性、分子特征及连接模式的复杂性凸显了空间解析的必要性。

尽管单细胞技术已揭示不同脑区细胞类型与状态的多样性(47, 48),但其无法精准定位神经元与非神经元细胞在层级与神经回路中的空间组织(49)。

Moffit团队利用MERFISH技术对小鼠下丘脑前视区超过100万个细胞的分析,揭示了70种神经元群体的空间分布及其与育儿、交配和攻击行为相关的基因表达特征(50)。

大型合作项目如BRAIN Initiative – Cell Census Network(51)与Allen Brain Cell Atlas(52)进一步整合单细胞技术、逆向追踪及高分辨率ST,构建了涵盖分子、功能与连接性的多模态脑图谱(53)。


除脑科学外,高分辨率ST技术正推动多器官三维分子图谱的构建。

例如,发育心脏的3D分子重建(54)与胃部细胞生态系统的百科全书式解析(55)揭示了器官发育与稳态维持的分子基础。

国际联盟如人类细胞图谱(Human Cell Atlas)(56)与人类生物分子图谱计划(HuBMAP)(57)致力于整合空间组学与单细胞多组学,构建涵盖健康与疾病状态的三维分子-细胞参考框架。

人类乳腺细胞图谱的建立(58)不仅揭示了组织驻留免疫细胞的丰富生态系统,还明确了导管与小叶区域的分子差异,为乳腺癌研究提供了新视角。

此外,针对心肌梗死(59)、化生性胃(55)及损伤肾脏(60)的空间图谱研究,成功识别了疾病相关的细胞邻里特征、修复与退行性信号通路,为靶向治疗策略的开发提供了关键依据。

这些成果标志着空间分子图谱在疾病机制解析与精准医学中的核心价值。


七、揭示驱动疾病过程的协调性细胞响应

高分辨率空间转录组学(ST)技术在揭示疾病进程中协调性细胞响应方面展现出显著优势。

Chen等人(61)率先通过结合低分辨率ST的广谱基因覆盖与高分辨率原位测序的精准定位,解析了阿尔茨海默病模型及人类样本中淀粉样斑块周围100微米范围内的基因表达程序,并明确其细胞类型特异性。随着基于成像的ST技术多重检测能力及基于测序技术的分辨率提升(62, 63),斑块微环境的细胞与分子特征得以更精细刻画。

在炎症与组织修复领域,低分辨率ST技术首次实现了对完整组织炎症通路的无偏解析(64, 65),但其多细胞分辨率限制需依赖计算工具重构细胞网络(66)。

高分辨率ST则进一步揭示了结肠炎中粒细胞亚群的分子异质性及其空间生态位(66, 67),并捕捉到银屑病中角化细胞与成纤维细胞的促炎性互作(68)。Cadinu团队(69)通过高分辨率ST重建小鼠结肠炎模型中细胞邻里的动态重塑,阐明炎症相关成纤维细胞通过受体-配体互作调控组织修复的分子机制。


肿瘤微环境(TME)的空间异质性研究是ST技术的另一核心应用方向。

早期低分辨率ST研究揭示了前列腺癌多灶性区域(71)及黑色素瘤转移灶(72)中TME的组织学同质但分子异质的特征。Moncada等人(73)整合低分辨率ST与单细胞RNA测序(scRNA-seq),量化了应激相关癌细胞亚群与炎性成纤维细胞的共定位模式。

空间蛋白质组学技术(如MIBI(76))在大型FFPE队列中以单细胞分辨率解析乳腺癌(77, 78)及结直肠癌(79, 80)中TME重塑的关键细胞邻里特征。近期高分辨率ST技术突破了基因覆盖与分辨率的限制,例如在转移性头颈部鳞癌(HNSCC)中精准定位侵袭前沿胆固醇代谢激活区域,并发现其与受体-配体互作热点的空间共现(33)。

Wu团队(83)利用Stereo-seq分析肝细胞癌(HCC)原发与转移灶,揭示侵袭边缘受损肝细胞表达血清淀粉样蛋白的促癌表型。此外,高分辨率ST与CRISPR筛选(Perturb-seq)的整合(85)成功鉴定出调控卵巢癌免疫逃逸的关键遗传调控因子,为靶向治疗提供了新方向。

尽管这些技术显著提升了疾病机制解析的深度,其临床应用仍受限于分辨率与基因覆盖的权衡,以及大规模临床验证的缺乏。未来需进一步开发标准化分析框架,并推动多组学整合策略,以全面揭示疾病进程中细胞-微环境互作的动态网络。


八、利用多细胞生态位作为个性化生物标志物

在个性化医疗中,高分辨率空间转录组学(ST)技术通过解析多细胞生态位的分子互作网络,为精准生物标志物的开发提供了新范式。

尽管免疫组化与分子检测(如PD-L1表达或驱动突变筛查)可识别特定药物靶点,但其对复杂微环境动态的解析能力有限。

例如,PD-L1阳性仅能部分预测抗PD-1治疗响应(86),因抗肿瘤免疫依赖于TME中多细胞组分的协同作用。Magen团队(87)结合MERFISH、单细胞RNA测序(scRNA-seq)及T细胞受体(TCR)测序,发现肝细胞癌(HCC)患者对免疫治疗的反应性与PD-1+ TCF-1+ CD8+ T细胞的空间分化相关,此类分化仅发生于响应者中,且依赖于CXCL13+ T辅助细胞与树突细胞形成的三元互作网络。

类似地,Chen等人(88)在肺癌中识别出免疫检查点治疗敏感患者特有的空间免疫枢纽,其特征为巨噬细胞趋化因子表达与PD-1+ TCF-7+ CD8+ T细胞、CCR7+ LAMP3+树突细胞的共定位,凸显了多细胞生态位作为预测性生物标志物的潜力。


除免疫互作外,肿瘤-间质交叉对话的空间解析同样关键。

Sharma团队(89, 90)在HCC中发现癌胎儿生态位,其由内皮细胞与巨噬细胞的胎儿样重编程构成,并通过高分辨率ST技术揭示POSTN+癌症相关成纤维细胞(CAFs)作为驱动该生态位的核心信号枢纽。

此类生态位的存在与患者复发风险升高及免疫治疗抵抗显著相关,提示其可作为预后分层与治疗选择的依据。进一步通过ST分析癌胎儿生态位内的受体-配体互作,可精准锁定促癌信号通路(如POSTN介导的间质-肿瘤通讯),为靶向干预提供分子基础。

随着下一代测序(NGS)技术广泛覆盖可操作突变(91),未来患者分层将整合多维度信息:包括突变谱、空间转录组表型(如癌胎儿程序或进展相关标志物(92))、药物靶点表达(如激素受体(93))及细胞互作网络(如免疫检查点或间质-肿瘤互作)。

这种多模态数据的空间整合有望突破现有生物标志物的局限性,推动治疗策略从单一靶点抑制向微环境调控的范式转变,最终实现更精准的个体化医疗。


九、解析新型疾病机制以促进药物开发

空间转录组学(ST)技术在药物开发中的应用已从靶点识别扩展至耐药机制解析及药物反应评估。

Hwang等人(95)通过整合单核RNA测序(snRNA-seq)与ST技术(GeoMx),分析了43例胰腺腺癌(PDAC)术后样本,识别出三个多细胞生态位,其中神经内分泌样恶性细胞与神经趋性癌症相关成纤维细胞(CAF)构成的生态位伴随CD8+ T细胞浸润,并在辅助化疗后显著富集。

该生态位内受体-配体相互作用网络的发现为抑制侵袭性表型提供了潜在干预靶点。Cui Zhou团队(96)进一步结合单细胞/单核RNA测序(sc/snRNA-seq)与ST技术,揭示了PDAC新辅助化疗后炎症CAF(iCAFs)中金属硫蛋白的表达上调,提示其可能作为iCAFs靶向治疗的补充策略,以增强现有IL-1R阻断联合化疗方案的疗效。

在放疗后微环境研究中,Oyoshi等人(97)通过整合scRNA-seq、ST(Visium)及空间蛋白质组学(CODEX),发现食管鳞状细胞癌放疗后浸润的PD-L1+免疫抑制性髓系细胞群,其同时表达多种免疫调节及促瘤基因,为放疗联合免疫检查点抑制剂或髓系靶向治疗提供了理论依据。

此外,Derry团队(98)开发了一种创新性方法,将高分辨率ST(GeoMx/CosMx)与肿瘤内微剂量给药相结合,在头颈部鳞癌(HNSCC)患者中首次实现原位药物反应评估。

该0期临床试验显示,SUMO抑制剂以空间梯度方式抑制肿瘤上皮细胞周期,并激活干扰素信号,促使免疫抑制微环境向免疫允许状态转化。这种原位药效评估策略不仅革新了药物早期测试模式,还为个性化联合疗法(如多药缓释装置)的筛选提供了技术框架。

综上,ST技术通过解析治疗诱导的微环境重塑及空间异质性耐药机制,正逐步成为药物开发中不可或缺的工具。其在靶点发现、治疗响应预测及耐药通路解析中的多维应用,将加速精准治疗策略的设计与优化。


十、超越蛋白编码基因:映射肿瘤和免疫克隆、全转录组及宿主-微生物相互作用

空间转录组学(ST)技术的应用已超越蛋白编码基因分析,拓展至肿瘤克隆演化、全转录组覆盖及宿主-微生物互作研究。

在肿瘤克隆映射方面,通过伪时间分析可重建肿瘤细胞的时空演化轨迹。例如,非小细胞肺癌(NSCLC)患者中,空间映射的伪时间分数揭示了肿瘤细胞获得促侵袭表型的特定区域,该区域内SPP1+巨噬细胞与肌成纤维细胞通过整合素受体互作驱动侵袭表型(46)。

基于拷贝数变异(CNV)的空间分析技术(如应用于多灶性前列腺癌(101)及结直肠癌(102))可追踪组织学良性、前瘤性及瘤性克隆的谱系分布,并结合外显子测序解析克隆特异性转录程序(103)。

此外,基于测序的ST方法通过捕获体细胞突变(如等位基因失衡)实现肿瘤克隆的空间可视化(103)。


免疫克隆动态的解析需结合适应性免疫受体(TCR/BCR)序列与转录表型。

尽管短读测序的3’端偏差限制了VDJ区域捕获(106),深度测序(107)或靶向PCR富集(108-110)可提升T/B细胞克隆检测灵敏度。

长读测序技术的应用进一步实现了免疫球蛋白异构体转换、体细胞高突变及克隆分布的精确分析(111)。

例如,Boileau团队(112)利用Nanopore长读测序结合Visium技术,在小鼠心肌梗死模型中揭示了梗死区特异性转录模式(如内含子保留增加及肌肉收缩基因异构体转换)。


在宿主-微生物互作研究领域,ST技术通过多策略整合实现病原体定位与宿主响应解析。

基于测序的方法可捕获聚腺苷酸化微生物转录本(如单纯疱疹病毒1型感染周期(117, 118)),而元基因组策略(如16S测序(119)及真菌ITS探针(120))则能同步分析微生物组成与宿主转录组。

原位聚腺苷酸化技术进一步扩展了非编码RNA及病毒mRNA的检测能力,例如在骨骼肌再生中映射非编码转录本(122),或在心肌炎模型中解析病毒RNA周围的局部宿主反应(122)。

针对福尔马林固定石蜡包埋(FFPE)样本的挑战,原位聚腺苷酸化联合polyA捕获策略显著提升了全转录组分析的灵敏度。Bai等人(124)成功对储存五年的临床FFPE肿瘤样本进行高灵敏度全转录组分析,克服了固定导致的RNA断裂问题(123),为回顾性研究及临床转化提供了关键技术支撑。

这些进展不仅深化了对肿瘤克隆异质性及免疫微环境的认知,也为感染性疾病机制与治疗策略研究开辟了新途径。


十一、超越基因表达:多模态空间组学

多模态空间组学的核心目标是通过整合基因组、表观遗传组、转录组、蛋白质组及代谢组等多层次数据,全面解析疾病过程中细胞与微环境的动态互作网络。

尽管基因表达分析在细胞类型与功能注释中具有关键作用(125),但单一模态的局限性需通过多模态互补分析克服。一种策略是对连续组织切片分别应用不同空间组学技术,并通过计算配准实现跨模态数据整合。

例如,Androvic团队(126)将电子显微镜与MERFISH技术结合,揭示了小鼠脑损伤模型中髓鞘再生区域泡沫状小胶质细胞的脂质代谢特征及其转录组动态。

另一研究通过整合CosMx空间转录组与二次谐波成像技术,量化了细胞邻里的胶原蛋白与弹性纤维含量,揭示了细胞外基质(ECM)机械特性对肿瘤侵袭的调控作用(46)。


更理想的多模态分析需在同一细胞中同步捕获多组学信息。

基于聚腺苷酸化抗体衍生标签的技术(如CITE-seq(127))已扩展至空间维度,实现单细胞分辨率下全转录组与数十种蛋白质的同步解析(128, 129)。

此外,空间转录组(ST)与质谱成像(MALDI-MSI)的联合应用,成功关联了帕金森病中多巴胺能神经元的神经递质水平与基因表达谱(130),并揭示了胃癌侵袭边缘的代谢异质性及免疫代谢重编程特征(131)。

形态学信息的整合进一步提升了数据解析深度:Bao等人(132)通过结合组织学图像与基因表达数据,识别出传统单模态分析易遗漏的细胞亚群,凸显了多模态整合在解析细胞异质性中的独特优势。

这些技术的协同应用不仅深化了对疾病机制的多维度认知,也为精准医学提供了更全面的分子标志物体系。未来需进一步开发标准化跨模态数据整合框架,以推动多模态空间组学在疾病诊断与治疗中的转化应用。


十二、走向可负担的分子数字化病理学

全切片成像(WSI)技术的进步推动了病理切片的数字化进程,结合临床与分子数据构建的大规模数据集为训练预测性深度学习模型奠定了基础(133)。

当前,深度学习算法已能够从数字化H&E图像中实现癌症组织学分类(135)、前列腺癌分级(136),并预测乳腺癌激素受体状态(137),但其准确性仍低于免疫组化检测。

此外,通过整合H&E图像与批量RNA测序数据(如TCGA项目(140)),可训练模型预测基因表达谱(141),然而批量测序的空间不可知性限制了预测精度与可解释性(142)。

低分辨率空间转录组学(ST)与H&E图像的联合分析为此提供了解决方案,例如通过预测乳腺癌局部基因表达模式(143)或提升检测分辨率(144),验证了空间信息对模型优化的关键作用。

Zeng团队(145)进一步利用ST数据验证了基于TCGA训练的肝细胞癌(HCC)治疗反应预测模型,发现预测高评分区域与免疫效应基因的局部上调及药物响应机制相关,揭示了模型预测的生物学合理性。

尽管H&E组织学凭借其成熟性、信息丰富性及成本效益仍是临床诊断的核心工具(146),分子标志物的应用仍受限于样本处理、设备及专业技术的需求。高分辨率ST数据集通过建立基因表达与形态学的空间关联,为训练下一代深度学习模型提供了关键资源。

此类模型有望直接从H&E图像预测分子标志物表达,从而以低成本实现分子诊断的广泛普及。这一方向将突破传统分子检测的局限性,尤其对资源有限地区的精准医疗具有重要价值。

未来,结合多模态数据(如ST与H&E)的深度学习框架将推动病理学从形态描述向机理驱动的预测模式转型,为可负担的分子数字化病理学奠定基础。


十三、展望

空间转录组学(ST)技术的快速发展为临床转化提供了广阔前景,但其广泛应用仍需解决多重挑战。

首先,亟需开展大规模临床试验以验证空间生物标志物与患者预后的关联性,并需建立标准化样本收集、保存及数据分析流程,以平衡分子检测精度与成本效益(149)。国际协作项目应致力于统一实验方法、基础设施要求及数据报告规范,从而生成可重复的临床决策依据。

然而,当前ST技术局限于单一时间点的静态快照分析,难以捕捉疾病动态演变过程。因此,需结合实验模型(如类器官系统)与光遗传扰动技术,以在患者来源模型中验证空间组学发现的机制假说(150)。例如,人脑类器官中光遗传调控与时空组学的整合,为解析神经发育及疾病因果机制提供了新范式(151)。

未来研究需进一步整合空间基因组学、表观遗传学及代谢组学技术,构建复杂组织的多模态三维分子图谱(151)。

此类多维度数据的融合将揭示基因表达调控网络与微环境相互作用的立体动态,为疾病机制解析提供系统视角。同时,ST技术的高分辨率分子-形态学数字化能力,为人工智能(AI)模型的训练提供了独特资源。

基于数十亿组织学图像(如Virchow(152)、RudolfV(153))及数千万单细胞图谱(如scGPT)训练的基础模型,通过微调可适应多种下游任务,增强在有限数据场景下的预测鲁棒性与泛化能力。这种AI驱动的分析框架有望突破传统H&E图像的分子预测瓶颈,实现从常规病理切片中推断空间生物标志物,从而提升全球范围内分子导向疗法的可及性(154)。

最终,ST技术与深度学习的协同发展将重塑病理学实践,推动精准医学从描述性分析向机理驱动的预测模式转型。


参考文献

https://doi.org/10.1146/annurev-pathmechdis-111523-023417

作者类型姓名单位(中文)
第一作者Tancredi Massimo Pentimalli1. 柏林医学系统生物学研究所调控元件系统生物学实验室,亥姆霍兹协会马克斯·德尔布吕克分子医学中心
2. 柏林夏里特医学院
通讯作者Nikolaus Rajewsky1. 柏林医学系统生物学研究所调控元件系统生物学实验室,亥姆霍兹协会马克斯·德尔布吕克分子医学中心
2. 柏林夏里特医学院
3. 德国心血管研究中心(柏林)
4. 柏林神经治疗卓越集群
5. 德国癌症联盟(柏林)
6. 柏林国家肿瘤疾病中心

结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值