用manim实现Gram-Schmidt正交化过程

        在线性代数中,正交基有许多美丽的性质。例如,由正交列向量组成的矩阵(又称正交矩阵)可以通过矩阵的转置很容易地进行反转。此外,例如:在由彼此正交的向量张成的子空间上投影向量也更容易。Gram-Schmidt过程是一个重要的算法,它允许我们将任意基转换为生成同一子空间的正交基。在这篇文章中,我们将使用一个流行的开源库。manim在3D中实现和可视化这个算法

        Gram-Schmidt过程是一种用于将一组线性无关的向量转化为一组正交(或正交归一化)的向量的算法。这个过程在数学和工程中广泛应用,特别是在计算机图形学、信号处理和统计分析中。

Gram-Schmidt 正交化的步骤

假设我们有一组线性无关的向量 {v_{1},v_{2},...,v_{n}},Gram-Schmidt过程的步骤如下:

  1. 初始化:给定向量v_{1},定它为第一个正交向量 u_{1}:

u_{1}=v_{1}

     2.后续向量的正交化:对于每个i=1,2,3,...,n,计算新的正交向量 u_{1}​:

u_{1}=v_{1}- \sum_{j=1}^{i-1}proj_{u_{i}}(v_{i})

        其中,投影 proj_{u_{i}}(v_{i}) 是:

proj_{u_{i}}(v_{i})=\frac{v_{i}.u_{j}}{v_{j}.u_{j}}.u_{j}

        这里表示向量的点积。

     3.归一化(可选):如果需要将向量归一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yasen.M

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值