索引
§ 2 \S2 §2 一阶谓词演算形式系统 F C \mathsf{FC} FC
一阶谓词演算形式系统 F C \mathsf{FC} FC的基本概念
F C \mathsf{FC} FC的联结词只有 ¬ \neg ¬, → \to →,量词只有 ∀ \forall ∀,且量词优先级等同一元联结词 ¬ \neg ¬。
定义2.1 项
归纳定义如下:
- 个体常元和个体变元是项;
- 若 n ∈ N + n \in \mathbb{N} ^{+} n∈N+, t 1 , t 2 , … , t n t_{1} ,t_{2},\dots, t_{n} t1,t2,…,tn都是项, n n n元函词 f ( n ) f^{\left ( n \right ) } f(n)作用下的 f ( n ) ( t 1 , t 2 , … , t n ) f^{\left ( n \right ) }\left ( t_{1} ,t_{2},\dots, t_{n} \right ) f(n)(t1,t2,…,tn)也是项;
- 只有有限次引用以上步骤确定的表达式才是项。
定义2.2 公式
归纳定义如下:
- 若 n ∈ N + n \in \mathbb{N} ^{+} n∈N+, t 1 , t 2 , … , t n t_{1} ,t_{2},\dots, t_{n} t1,t2,…,tn都是项, P ( n ) P^{\left ( n \right ) } P(n)为 n n n元谓词符号,则 P ( n ) ( t 1 , t 2 , … , t n ) P^{\left ( n \right ) }\left ( t_{1} ,t_{2},\dots, t_{n} \right ) P(n)(t1,t2,…,tn)也是合式公式,称为原子公式;
- 若 A A A为合式公式,则 A A A的否定式也是合式公式;
- 若 A A A, B B B为合式公式,则 A A A, B B B的蕴含式也是合式公式;
- 若 A A A为合式公式, v v v为个体变元,则 A A A关于 v v v的全称命题也是合式公式;
- 只有有限次引用以上步骤确定的表达式才是合式公式。
F C \mathsf{FC} FC与 P C \mathsf{PC} PC的转换
在 F C \mathsf{FC} FC中引入零元谓词(命题)符号,可以使 F C \mathsf{FC} FC包含子系统 P C \mathsf{PC} PC。
定义2.3 全称化
设 A A A中 n n n个自由变元为 v 1 , v 2 , … v n v_{1},v_{2},\dots v_{n} v1,v2,…vn,则公式 ∀ v i 1 ∀ v i 2 ⋯ ∀ v i r ( r ∈ N + , r ≤ n , 1 ≤ v i 1 < v i 2 < ⋯ < v i r ≤ n ) \forall v_{i1}\forall v_{i2}\cdots \forall v_{ir}(r\in \mathbb{N}^{+},r\le n,1\le v_{i1}< v_{i2}< \cdots <v_{ir}\le n) ∀vi1∀vi2⋯∀vir(r∈N+,r≤n,1≤vi1<vi2<⋯<vir≤n)称为 A A A的全称化,公式 ∀ v i 1 ∀ v i 2 ⋯ ∀ v i r ( r ∈ N + , r ≤ n , 1 ≤ v i 1 < v i 2 < ⋯ < v i r ≤ n ) \forall v_{i1}\forall v_{i2}\cdots \forall v_{ir}(r\in \mathbb{N}^{+},r\le n,1\le v_{i1}< v_{i2}< \cdots <v_{ir}\le n) ∀vi1∀vi2⋯∀vir(r∈N+,r≤n,1≤vi1<vi2<⋯<vir≤n)称为 A A A的全称化,公式 ∀ v 1 ∀ v 2 ⋯ ∀ v n \forall v_{1}\forall v_{2}\cdots \forall v_{n} ∀v1∀v2⋯∀vn称为 A A A的全称封闭式,若 A A A中无自由变元,则 A A A的全称封闭式等同于 A A A,此时 A A A也称为 F C \mathsf{FC} FC中的一个命题。
F C \mathsf{FC} FC的公理和推理规则
关于一阶谓词形式演算系统的理论记为
J
\mathcal{J}
J,有关于
F
C
\mathsf{FC}
FC的理论为
J
(
F
C
)
\mathcal{J}\left ( \mathsf{FC} \right )
J(FC)。
以下公理及其全称化组成
F
C
\mathsf{FC}
FC的公理模式:
- A 1. A → ( B → A ) A1.A \to \left ( B\to A \right ) A1.A→(B→A)
- A 2. ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) A2.\left ( A\to \left ( B\to C \right ) \right ) \to \left ( \left ( A\to B \right ) \to \left ( A\to C \right ) \right ) A2.(A→(B→C))→((A→B)→(A→C))
- A 3. ( A → B ) → ( ¬ B → ¬ A ) A3.\left ( A\to B \right ) \to \left ( \neg B\to \neg A \right ) A3.(A→B)→(¬B→¬A)
- A 4 : ∀ v A → A t v ( t 对 A 中的 v 可代入 ) A4:\forall vA\to A_{t}^{v} (t对A中的v可代入) A4:∀vA→Atv(t对A中的v可代入)
- A 5 : ∀ v ( A → B ) → ( ∀ v A → ∀ v B ) A5:\forall v\left ( A\to B \right )\to \left ( \forall vA\to \forall vB \right ) A5:∀v(A→B)→(∀vA→∀vB)
- A 6 : A → ∀ v A ( v 在 A 中无自由出现 ) A6:A\to \forall vA(v在A中无自由出现) A6:A→∀vA(v在A中无自由出现)
F C \mathsf{FC} FC的推理规则只有:
- 分离规则 r m p : A , A → B B r_{mp}: \frac{A,A\to B}{B} rmp:BA,A→B。
F C \mathsf{FC} FC的定理
定理2.1
对于
F
C
\mathsf{FC}
FC中的任意公式
A
A
A,变元
v
v
v,
⊢
P
C
∀
v
A
→
A
\vdash _{PC} \forall vA\to A
⊢PC∀vA→A。
A
4
A4
A4的特例
∀
v
A
→
A
v
v
=
A
\forall vA\to A_{v}^{v}=A
∀vA→Avv=A。
定理2.2
对于
F
C
\mathsf{FC}
FC中的任意公式
A
A
A,变元
v
v
v,
⊢
F
C
A
→
¬
∀
v
¬
A
\vdash _{\mathsf{FC} } A\to \neg \forall v \neg A
⊢FCA→¬∀v¬A,即
⊢
F
C
A
→
∃
v
A
\vdash _{\mathsf{FC} } A\to \exists v A
⊢FCA→∃vA。
由定理2.1,
∀
v
¬
A
→
¬
A
\forall v\neg A\to \neg A
∀v¬A→¬A,
(
1
)
∀
v
¬
A
→
¬
A
(
2
)
(
∀
v
¬
A
→
¬
A
)
→
(
A
→
¬
∀
v
¬
A
)
A
3
(
3
)
A
→
¬
∀
v
¬
A
r
m
p
(
1
)
(
2
)
\begin{array}{l} (1) & \forall v\neg A\to \neg A & \\ (2) & \left ( \forall v\neg A\to \neg A \right ) \to \left ( A\to \neg \forall v \neg A \right ) & A3 \\ (3) & A\to \neg \forall v \neg A & r_{mp}(1)(2) \end{array}
(1)(2)(3)∀v¬A→¬A(∀v¬A→¬A)→(A→¬∀v¬A)A→¬∀v¬AA3rmp(1)(2)
定理2.3
对于 F C FC FC中的任意公式 A A A,变元 v v v, ∀ v A → ¬ ∀ v ¬ A \forall v A\to \neg \forall v\neg A ∀vA→¬∀v¬A。
定理2.4 全称推广定理
对于
F
C
FC
FC中的任意公式
A
A
A,变元
v
v
v,若
⊢
A
\vdash A
⊢A,则
⊢
∀
v
A
\vdash \forall vA
⊢∀vA。
结构归纳法,对证明序列
⟨
A
1
,
A
2
,
⋯
,
A
n
=
A
⟩
\left \langle A_{1}, A_{2},\cdots ,A_{n}=A \right \rangle
⟨A1,A2,⋯,An=A⟩的长度
n
n
n进行归纳。
n
=
1
n=1
n=1时,
A
A
A是公理,分情况讨论:
(1)
v
v
v在
A
A
A中无自由出现
由
A
6
:
A
→
∀
v
A
(
v
在
A
中无自由出现
)
A6:A\to \forall vA(v在A中无自由出现)
A6:A→∀vA(v在A中无自由出现)以及
A
A
A是公理,通过分离规则推出
∀
v
A
\forall vA
∀vA。
(2)
v
v
v在
A
A
A中有自由出现
A
A
A是公理,则
A
A
A的全称封闭式
∀
v
A
\forall vA
∀vA也是公理。
设证明序列长度小于等于
n
−
1
n-1
n−1时均成立,则对于
A
n
=
A
A_{n}=A
An=A,除了上文
n
=
1
n=1
n=1时有如下情况:
(1)
A
=
A
i
(
1
≤
i
≤
n
)
A=A_{i}\left ( 1\le i\le n \right )
A=Ai(1≤i≤n)
因为
A
i
A_{i}
Ai也是
F
C
FC
FC中的定理,所以由归纳假设,
⊢
∀
v
A
\vdash \forall vA
⊢∀vA。
(2)
A
A
A可通过分离规则导出
设
A
A
A可由
A
i
A_{i}
Ai,
A
j
=
A
i
→
A
(
1
≤
i
<
j
≤
n
)
A_{j}= A_{i}\to A(1\le i<j\le n)
Aj=Ai→A(1≤i<j≤n)通过分离规则导出,则由归纳假设,
(
1
)
∀
v
A
i
归纳假设
(
2
)
∀
v
(
A
i
→
A
)
归纳假设
(
3
)
∀
v
(
A
i
→
A
)
→
(
∀
v
A
i
→
∀
v
A
)
A
5
(
4
)
∀
v
A
i
→
∀
v
A
r
m
p
(
2
)
(
3
)
(
5
)
∀
v
A
r
m
p
(
1
)
(
5
)
\begin{array}{l} (1) & \forall vA_{i} & 归纳假设 \\ (2) & \forall v\left ( A_{i}\to A \right ) & 归纳假设 \\ (3) & \forall v\left ( A_{i}\to A \right )\to \left ( \forall vA_{i}\to \forall vA \right ) & A5\\ (4) & \forall vA_{i}\to \forall vA & r_{mp} (2)(3) \\ (5) & \forall vA & r_{mp} (1)(5) \end{array}
(1)(2)(3)(4)(5)∀vAi∀v(Ai→A)∀v(Ai→A)→(∀vAi→∀vA)∀vAi→∀vA∀vA归纳假设归纳假设A5rmp(2)(3)rmp(1)(5)
综上所述,若
⊢
A
\vdash A
⊢A,则
⊢
∀
v
A
\vdash \forall vA
⊢∀vA。
定理2.5 全称推广定理
对于
F
C
FC
FC中的任意公式
A
A
A,任意公式集合
Γ
\Gamma
Γ,以及不在
Γ
\Gamma
Γ中任何公式自由出现的变元
v
v
v,若
Γ
⊢
A
\Gamma \vdash A
Γ⊢A,则
Γ
⊢
∀
v
A
\Gamma \vdash \forall vA
Γ⊢∀vA。
结构归纳法,对证明序列
⟨
A
1
,
A
2
,
⋯
,
A
n
=
A
⟩
\left \langle A_{1}, A_{2},\cdots ,A_{n}=A \right \rangle
⟨A1,A2,⋯,An=A⟩的长度
n
n
n进行归纳。
n
=
1
n=1
n=1时,分情况讨论:
(1)
A
A
A是公理
见定理2.4的证明,
∀
v
A
\forall vA
∀vA也是公理。
(2)
A
∈
Γ
A\in \Gamma
A∈Γ
变元
v
v
v不在
Γ
\Gamma
Γ中任何公式自由出现,则引用
A
6
:
A
→
∀
v
A
(
v
在
A
中无自由出现
)
A6:A\to \forall vA(v在A中无自由出现)
A6:A→∀vA(v在A中无自由出现)和分离规则导出。
设证明序列长度小于等于
n
−
1
n-1
n−1时均成立,则对于
A
n
=
A
A_{n}=A
An=A,除了上文
n
=
1
n=1
n=1时有如下情况:
(1)
A
=
A
i
(
1
≤
i
≤
n
)
A=A_{i}\left ( 1\le i\le n \right )
A=Ai(1≤i≤n)
因为
A
i
A_{i}
Ai也是
F
C
FC
FC中的定理,所以由归纳假设,
Γ
⊢
∀
v
A
\Gamma \vdash \forall vA
Γ⊢∀vA。
(2)
A
A
A可通过分离规则导出
设
A
A
A可由
A
i
A_{i}
Ai,
A
j
=
A
i
→
A
(
1
≤
i
<
j
≤
n
)
A_{j}= A_{i}\to A(1\le i<j\le n)
Aj=Ai→A(1≤i<j≤n)通过分离规则导出,则由归纳假设,
(
1
)
∀
v
A
i
归纳假设
(
2
)
∀
v
(
A
i
→
A
)
归纳假设
(
3
)
∀
v
(
A
i
→
A
)
→
(
∀
v
A
i
→
∀
v
A
)
A
5
(
4
)
∀
v
A
i
→
∀
v
A
r
m
p
(
2
)
(
3
)
(
5
)
∀
v
A
r
m
p
(
1
)
(
5
)
\begin{array}{l} (1) & \forall vA_{i} & 归纳假设 \\ (2) & \forall v\left ( A_{i}\to A \right ) & 归纳假设 \\ (3) & \forall v\left ( A_{i}\to A \right )\to \left ( \forall vA_{i}\to \forall vA \right ) & A5\\ (4) & \forall vA_{i}\to \forall vA & r_{mp} (2)(3) \\ (5) & \forall vA & r_{mp} (1)(5) \end{array}
(1)(2)(3)(4)(5)∀vAi∀v(Ai→A)∀v(Ai→A)→(∀vAi→∀vA)∀vAi→∀vA∀vA归纳假设归纳假设A5rmp(2)(3)rmp(1)(5)
综上所述,若
Γ
⊢
A
\Gamma \vdash A
Γ⊢A,则
Γ
⊢
∀
v
A
\Gamma \vdash \forall vA
Γ⊢∀vA。
定理2.6 演绎定理
对
F
C
\mathsf{FC}
FC中任意的公式集合
Γ
\Gamma
Γ和公式
A
A
A,
B
B
B,
Γ
∪
{
A
}
⊢
F
C
B
\Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } B
Γ∪{A}⊢FCB当且仅当
Γ
⊢
F
C
A
→
B
\Gamma \vdash _{\mathsf{FC} } A\to B
Γ⊢FCA→B。
因为
P
C
PC
PC是
F
C
FC
FC的子系统.所以
P
C
PC
PC的定理也包含在
F
C
FC
FC中,演绎定理在
F
C
FC
FC中也成立。
定理2.7 假言异位
对
F
C
\mathsf{FC}
FC中任意的公式集合
Γ
\Gamma
Γ和公式
A
A
A,
B
B
B,
Γ
∪
{
A
}
⊢
F
C
¬
B
\Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } \neg B
Γ∪{A}⊢FC¬B当且仅当
Γ
∪
{
B
}
⊢
F
C
¬
A
\Gamma \cup \left \{ B \right \} \vdash _{\mathsf{FC} } \neg A
Γ∪{B}⊢FC¬A。
由演绎定理,
Γ
∪
{
A
}
⊢
F
C
¬
B
\Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } \neg B
Γ∪{A}⊢FC¬B当且仅当
Γ
⊢
F
C
A
→
¬
B
\Gamma \vdash _{\mathsf{FC} } A\to \neg B
Γ⊢FCA→¬B,
(
1
)
A
→
¬
B
(
2
)
(
A
→
¬
B
)
→
(
B
→
¬
A
)
A
3
(
3
)
B
→
¬
A
r
m
p
(
1
)
(
2
)
\begin{array}{l} (1) & A\to \neg B & \\ (2) & \left ( A\to \neg B \right ) \to \left ( B\to \neg A \right ) & A3 \\ (3) & B\to \neg A & r_{mp} (1)(2) \\ \end{array}
(1)(2)(3)A→¬B(A→¬B)→(B→¬A)B→¬AA3rmp(1)(2)
再次引用演绎定理,
Γ
⊢
F
C
B
→
¬
A
\Gamma \vdash _{\mathsf{FC} } B\to \neg A
Γ⊢FCB→¬A当且仅当
Γ
∪
{
B
}
⊢
F
C
¬
A
\Gamma \cup \left \{ B \right \} \vdash _{\mathsf{FC} } \neg A
Γ∪{B}⊢FC¬A。
定理2.8 反证法
若 Γ ∪ { A } \Gamma \cup \left \{ A \right \} Γ∪{A}不一致,则 Γ ⊢ ¬ A \Gamma \vdash \neg A Γ⊢¬A。
定理2.9
对
F
C
\mathsf{FC}
FC中任意的公式集合
Γ
\Gamma
Γ和公式
A
A
A,
B
B
B,以及不在
Γ
\Gamma
Γ中任何公式自由出现的变元
v
v
v,
Γ
∪
{
A
}
⊢
B
\Gamma \cup \left \{ A \right \} \vdash B
Γ∪{A}⊢B蕴含
Γ
∪
{
∀
v
A
}
⊢
∀
v
B
\Gamma \cup \left \{ \forall vA \right \} \vdash \forall vB
Γ∪{∀vA}⊢∀vB或
Γ
∪
{
∀
v
A
}
⊢
B
\Gamma \cup \left \{ \forall vA \right \} \vdash B
Γ∪{∀vA}⊢B。
由演绎定理,
Γ
∪
{
A
}
⊢
B
\Gamma \cup \left \{ A \right \} \vdash B
Γ∪{A}⊢B当且仅当
Γ
⊢
A
→
B
\Gamma \vdash A\to B
Γ⊢A→B,由全称推广定理,
Γ
⊢
∀
v
(
A
→
B
)
\Gamma \vdash \forall v \left ( A\to B \right )
Γ⊢∀v(A→B),
(
1
)
∀
v
(
A
→
B
)
(
2
)
∀
v
(
A
→
B
)
→
(
∀
v
A
→
∀
v
B
)
A
5
(
3
)
∀
v
A
→
∀
v
B
r
m
p
(
1
)
(
2
)
\begin{array}{l} (1) & \forall v \left ( A\to B \right ) & \\ (2) & \forall v\left ( A\to B \right )\to \left ( \forall vA\to \forall vB \right ) &A5 \\ (3) & \forall vA\to \forall vB & r_{mp}(1)(2) \\ \end{array}
(1)(2)(3)∀v(A→B)∀v(A→B)→(∀vA→∀vB)∀vA→∀vBA5rmp(1)(2)
再次引用演绎定理,
Γ
⊢
∀
v
A
→
∀
v
B
\Gamma \vdash \forall vA \to \forall vB
Γ⊢∀vA→∀vB当且仅当
Γ
∪
{
∀
v
A
}
⊢
∀
v
B
\Gamma \cup \left \{ \forall vA \right \} \vdash \forall vB
Γ∪{∀vA}⊢∀vB。
由定理2.1,
Γ
⊢
∀
v
B
→
B
\Gamma \vdash \forall vB \to B
Γ⊢∀vB→B。
(
1
)
∀
v
B
(
2
)
∀
v
B
→
B
(
3
)
B
r
m
p
(
1
)
(
2
)
\begin{array}{l} (1) & \forall vB & \\ (2) & \forall vB \to B & \\ (3) & B & r_{mp}(1)(2) \\ \end{array}
(1)(2)(3)∀vB∀vB→BBrmp(1)(2)
定理2.10 存在消除定理
设
Γ
\Gamma
Γ为
F
C
FC
FC中任意公式集合,公式
A
A
A,
B
B
B为
F
C
FC
FC中任意公式,且变元
v
v
v不在
Γ
\Gamma
Γ的任意公式以及公式
B
B
B里自由出现,那么由
Γ
⊢
∃
v
A
\Gamma \vdash \exists vA
Γ⊢∃vA(
Γ
⊢
¬
∀
v
¬
A
\Gamma \vdash \neg \forall v\neg A
Γ⊢¬∀v¬A )以及
Γ
∪
{
A
}
⊢
B
\Gamma \cup \left \{ A \right \} \vdash B
Γ∪{A}⊢B蕴含
Γ
⊢
B
\Gamma \vdash B
Γ⊢B。
Γ
∪
{
A
}
⊢
B
\Gamma \cup \left \{ A \right \} \vdash B
Γ∪{A}⊢B,由演绎定理,
Γ
⊢
A
→
B
\Gamma \vdash A\to B
Γ⊢A→B。
(
1
)
A
→
B
(
2
)
(
A
→
B
)
→
(
¬
B
→
¬
A
)
A
3
(
3
)
¬
B
→
¬
A
r
m
p
(
1
)
(
2
)
\begin{array}{l} (1) & A\to B & \\ (2) &\left ( A\to B \right ) \to \left (\neg B\to \neg A \right ) & A3\\ (3) & \neg B\to \neg A &r_{mp}(1)(2) \\ \end{array}
(1)(2)(3)A→B(A→B)→(¬B→¬A)¬B→¬AA3rmp(1)(2)
Γ
⊢
¬
B
→
¬
A
\Gamma \vdash \neg B\to \neg A
Γ⊢¬B→¬A,由演绎定理,
Γ
∪
{
¬
B
}
⊢
¬
A
\Gamma \cup \left \{ \neg B \right \} \vdash \neg A
Γ∪{¬B}⊢¬A。
因为变元
v
v
v不在
Γ
\Gamma
Γ的任意公式以及公式
B
B
B里自由出现,所以根据全称推广定理,
Γ
∪
{
¬
B
}
⊢
∀
v
¬
A
\Gamma \cup \left \{ \neg B \right \} \vdash \forall v \neg A
Γ∪{¬B}⊢∀v¬A。
由演绎定理,
Γ
⊢
¬
B
→
∀
v
¬
A
\Gamma \vdash \neg B\to \forall v\neg A
Γ⊢¬B→∀v¬A。
(
1
)
¬
B
→
∀
v
¬
A
(
2
)
(
¬
B
→
∀
v
¬
A
)
→
(
¬
∀
v
¬
A
→
B
)
A
3
(
3
)
¬
∀
v
¬
A
→
B
r
m
p
(
1
)
(
2
)
(
4
)
¬
∀
v
¬
A
(
5
)
B
r
m
p
(
3
)
(
4
)
\begin{array}{l} (1) & \neg B\to \forall v\neg A & \\ (2) &\left ( \neg B\to \forall v\neg A \right ) \to \left (\neg \forall v\neg A\to B \right ) & A3\\ (3) &\neg \forall v\neg A\to B &r_{mp}(1)(2) \\ (4) & \neg \forall v\neg A & \\ (5) & B & r_{mp}(3)(4) \end{array}
(1)(2)(3)(4)(5)¬B→∀v¬A(¬B→∀v¬A)→(¬∀v¬A→B)¬∀v¬A→B¬∀v¬ABA3rmp(1)(2)rmp(3)(4)
定理2.11 替换原理
设命题公式 A A A中截取的子公式 C C C满足 C ⇔ D C \Leftrightarrow D C⇔D,若将 A A A中子公式 C C C的某些出现位置替换为 D D D,则替换后的公式 D D D满足 A ⇔ B A \Leftrightarrow B A⇔B。
定理2.12 易名原理
在 F C FC FC中,若 B B B是 A A A的变量易名式,且 B B B中替换后的变元不在 A A A中出现,则 B ⇔ A B\Leftrightarrow A B⇔A。