谓词逻辑<2>——一阶谓词演算形式系统FC

§ 2 \S2 §2 一阶谓词演算形式系统 F C \mathsf{FC} FC

一阶谓词演算形式系统 F C \mathsf{FC} FC的基本概念

F C \mathsf{FC} FC的联结词只有 ¬ \neg ¬, → \to ,量词只有 ∀ \forall ,且量词优先级等同一元联结词 ¬ \neg ¬

定义2.1 项

归纳定义如下:

  1. 个体常元和个体变元是项;
  2. n ∈ N + n \in \mathbb{N} ^{+} nN+, t 1 , t 2 , … , t n t_{1} ,t_{2},\dots, t_{n} t1,t2,,tn都是项, n n n元函词 f ( n ) f^{\left ( n \right ) } f(n)作用下的 f ( n ) ( t 1 , t 2 , … , t n ) f^{\left ( n \right ) }\left ( t_{1} ,t_{2},\dots, t_{n} \right ) f(n)(t1,t2,,tn)也是项;
  3. 只有有限次引用以上步骤确定的表达式才是项。

定义2.2 公式

归纳定义如下:

  1. n ∈ N + n \in \mathbb{N} ^{+} nN+, t 1 , t 2 , … , t n t_{1} ,t_{2},\dots, t_{n} t1,t2,,tn都是项, P ( n ) P^{\left ( n \right ) } P(n) n n n元谓词符号,则 P ( n ) ( t 1 , t 2 , … , t n ) P^{\left ( n \right ) }\left ( t_{1} ,t_{2},\dots, t_{n} \right ) P(n)(t1,t2,,tn)也是合式公式,称为原子公式;
  2. A A A为合式公式,则 A A A的否定式也是合式公式;
  3. A A A, B B B为合式公式,则 A A A, B B B的蕴含式也是合式公式;
  4. A A A为合式公式, v v v为个体变元,则 A A A关于 v v v的全称命题也是合式公式;
  5. 只有有限次引用以上步骤确定的表达式才是合式公式。

F C \mathsf{FC} FC P C \mathsf{PC} PC的转换

F C \mathsf{FC} FC中引入零元谓词(命题)符号,可以使 F C \mathsf{FC} FC包含子系统 P C \mathsf{PC} PC

定义2.3 全称化

A A A n n n个自由变元为 v 1 , v 2 , … v n v_{1},v_{2},\dots v_{n} v1,v2,vn,则公式 ∀ v i 1 ∀ v i 2 ⋯ ∀ v i r ( r ∈ N + , r ≤ n , 1 ≤ v i 1 < v i 2 < ⋯ < v i r ≤ n ) \forall v_{i1}\forall v_{i2}\cdots \forall v_{ir}(r\in \mathbb{N}^{+},r\le n,1\le v_{i1}< v_{i2}< \cdots <v_{ir}\le n) vi1vi2vir(rN+,rn,1vi1<vi2<<virn)称为 A A A的全称化,公式 ∀ v i 1 ∀ v i 2 ⋯ ∀ v i r ( r ∈ N + , r ≤ n , 1 ≤ v i 1 < v i 2 < ⋯ < v i r ≤ n ) \forall v_{i1}\forall v_{i2}\cdots \forall v_{ir}(r\in \mathbb{N}^{+},r\le n,1\le v_{i1}< v_{i2}< \cdots <v_{ir}\le n) vi1vi2vir(rN+,rn,1vi1<vi2<<virn)称为 A A A的全称化,公式 ∀ v 1 ∀ v 2 ⋯ ∀ v n \forall v_{1}\forall v_{2}\cdots \forall v_{n} v1v2vn称为 A A A的全称封闭式,若 A A A中无自由变元,则 A A A的全称封闭式等同于 A A A,此时 A A A也称为 F C \mathsf{FC} FC中的一个命题。

F C \mathsf{FC} FC的公理和推理规则

关于一阶谓词形式演算系统的理论记为 J \mathcal{J} J,有关于 F C \mathsf{FC} FC的理论为 J ( F C ) \mathcal{J}\left ( \mathsf{FC} \right ) J(FC)
以下公理及其全称化组成 F C \mathsf{FC} FC的公理模式:

  1. A 1. A → ( B → A ) A1.A \to \left ( B\to A \right ) A1.A(BA)
  2. A 2. ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) A2.\left ( A\to \left ( B\to C \right ) \right ) \to \left ( \left ( A\to B \right ) \to \left ( A\to C \right ) \right ) A2.(A(BC))((AB)(AC))
  3. A 3. ( A → B ) → ( ¬ B → ¬ A ) A3.\left ( A\to B \right ) \to \left ( \neg B\to \neg A \right ) A3.(AB)(¬B¬A)
  4. A 4 : ∀ v A → A t v ( t 对 A 中的 v 可代入 ) A4:\forall vA\to A_{t}^{v} (t对A中的v可代入) A4:vAAtv(tA中的v可代入)
  5. A 5 : ∀ v ( A → B ) → ( ∀ v A → ∀ v B ) A5:\forall v\left ( A\to B \right )\to \left ( \forall vA\to \forall vB \right ) A5:v(AB)(vAvB)
  6. A 6 : A → ∀ v A ( v 在 A 中无自由出现 ) A6:A\to \forall vA(v在A中无自由出现) A6:AvA(vA中无自由出现)

F C \mathsf{FC} FC的推理规则只有:

  1. 分离规则 r m p : A , A → B B r_{mp}: \frac{A,A\to B}{B} rmp:BA,AB

F C \mathsf{FC} FC的定理

定理2.1

对于 F C \mathsf{FC} FC中的任意公式 A A A,变元 v v v, ⊢ P C ∀ v A → A \vdash _{PC} \forall vA\to A PCvAA
A 4 A4 A4的特例 ∀ v A → A v v = A \forall vA\to A_{v}^{v}=A vAAvv=A

定理2.2

对于 F C \mathsf{FC} FC中的任意公式 A A A,变元 v v v, ⊢ F C A → ¬ ∀ v ¬ A \vdash _{\mathsf{FC} } A\to \neg \forall v \neg A FCA¬∀v¬A,即 ⊢ F C A → ∃ v A \vdash _{\mathsf{FC} } A\to \exists v A FCAvA
由定理2.1, ∀ v ¬ A → ¬ A \forall v\neg A\to \neg A v¬A¬A,
( 1 ) ∀ v ¬ A → ¬ A ( 2 ) ( ∀ v ¬ A → ¬ A ) → ( A → ¬ ∀ v ¬ A ) A 3 ( 3 ) A → ¬ ∀ v ¬ A r m p ( 1 ) ( 2 ) \begin{array}{l} (1) & \forall v\neg A\to \neg A & \\ (2) & \left ( \forall v\neg A\to \neg A \right ) \to \left ( A\to \neg \forall v \neg A \right ) & A3 \\ (3) & A\to \neg \forall v \neg A & r_{mp}(1)(2) \end{array} (1)(2)(3)v¬A¬A(v¬A¬A)(A¬∀v¬A)A¬∀v¬AA3rmp(1)(2)

定理2.3

对于 F C FC FC中的任意公式 A A A,变元 v v v, ∀ v A → ¬ ∀ v ¬ A \forall v A\to \neg \forall v\neg A vA¬∀v¬A

定理2.4 全称推广定理

对于 F C FC FC中的任意公式 A A A,变元 v v v,若 ⊢ A \vdash A A,则 ⊢ ∀ v A \vdash \forall vA vA
结构归纳法,对证明序列 ⟨ A 1 , A 2 , ⋯   , A n = A ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{n}=A \right \rangle A1,A2,,An=A的长度 n n n进行归纳。
n = 1 n=1 n=1时, A A A是公理,分情况讨论:
(1) v v v A A A中无自由出现
A 6 : A → ∀ v A ( v 在 A 中无自由出现 ) A6:A\to \forall vA(v在A中无自由出现) A6:AvA(vA中无自由出现)以及 A A A是公理,通过分离规则推出 ∀ v A \forall vA vA
(2) v v v A A A中有自由出现
A A A是公理,则 A A A的全称封闭式 ∀ v A \forall vA vA也是公理。
设证明序列长度小于等于 n − 1 n-1 n1时均成立,则对于 A n = A A_{n}=A An=A,除了上文 n = 1 n=1 n=1时有如下情况:
(1) A = A i ( 1 ≤ i ≤ n ) A=A_{i}\left ( 1\le i\le n \right ) A=Ai(1in)
因为 A i A_{i} Ai也是 F C FC FC中的定理,所以由归纳假设, ⊢ ∀ v A \vdash \forall vA vA
(2) A A A可通过分离规则导出
A A A可由 A i A_{i} Ai, A j = A i → A ( 1 ≤ i < j ≤ n ) A_{j}= A_{i}\to A(1\le i<j\le n) Aj=AiA(1i<jn)通过分离规则导出,则由归纳假设,
( 1 ) ∀ v A i 归纳假设 ( 2 ) ∀ v ( A i → A ) 归纳假设 ( 3 ) ∀ v ( A i → A ) → ( ∀ v A i → ∀ v A ) A 5 ( 4 ) ∀ v A i → ∀ v A r m p ( 2 ) ( 3 ) ( 5 ) ∀ v A r m p ( 1 ) ( 5 ) \begin{array}{l} (1) & \forall vA_{i} & 归纳假设 \\ (2) & \forall v\left ( A_{i}\to A \right ) & 归纳假设 \\ (3) & \forall v\left ( A_{i}\to A \right )\to \left ( \forall vA_{i}\to \forall vA \right ) & A5\\ (4) & \forall vA_{i}\to \forall vA & r_{mp} (2)(3) \\ (5) & \forall vA & r_{mp} (1)(5) \end{array} (1)(2)(3)(4)(5)vAiv(AiA)v(AiA)(vAivA)vAivAvA归纳假设归纳假设A5rmp(2)(3)rmp(1)(5)
综上所述,若 ⊢ A \vdash A A,则 ⊢ ∀ v A \vdash \forall vA vA

定理2.5 全称推广定理

对于 F C FC FC中的任意公式 A A A,任意公式集合 Γ \Gamma Γ,以及不在 Γ \Gamma Γ中任何公式自由出现的变元 v v v,若 Γ ⊢ A \Gamma \vdash A ΓA,则 Γ ⊢ ∀ v A \Gamma \vdash \forall vA ΓvA
结构归纳法,对证明序列 ⟨ A 1 , A 2 , ⋯   , A n = A ⟩ \left \langle A_{1}, A_{2},\cdots ,A_{n}=A \right \rangle A1,A2,,An=A的长度 n n n进行归纳。
n = 1 n=1 n=1时,分情况讨论:
(1) A A A是公理
见定理2.4的证明, ∀ v A \forall vA vA也是公理。
(2) A ∈ Γ A\in \Gamma AΓ
变元 v v v不在 Γ \Gamma Γ中任何公式自由出现,则引用 A 6 : A → ∀ v A ( v 在 A 中无自由出现 ) A6:A\to \forall vA(v在A中无自由出现) A6:AvA(vA中无自由出现)和分离规则导出。
设证明序列长度小于等于 n − 1 n-1 n1时均成立,则对于 A n = A A_{n}=A An=A,除了上文 n = 1 n=1 n=1时有如下情况:
(1) A = A i ( 1 ≤ i ≤ n ) A=A_{i}\left ( 1\le i\le n \right ) A=Ai(1in)
因为 A i A_{i} Ai也是 F C FC FC中的定理,所以由归纳假设, Γ ⊢ ∀ v A \Gamma \vdash \forall vA ΓvA
(2) A A A可通过分离规则导出
A A A可由 A i A_{i} Ai, A j = A i → A ( 1 ≤ i < j ≤ n ) A_{j}= A_{i}\to A(1\le i<j\le n) Aj=AiA(1i<jn)通过分离规则导出,则由归纳假设,
( 1 ) ∀ v A i 归纳假设 ( 2 ) ∀ v ( A i → A ) 归纳假设 ( 3 ) ∀ v ( A i → A ) → ( ∀ v A i → ∀ v A ) A 5 ( 4 ) ∀ v A i → ∀ v A r m p ( 2 ) ( 3 ) ( 5 ) ∀ v A r m p ( 1 ) ( 5 ) \begin{array}{l} (1) & \forall vA_{i} & 归纳假设 \\ (2) & \forall v\left ( A_{i}\to A \right ) & 归纳假设 \\ (3) & \forall v\left ( A_{i}\to A \right )\to \left ( \forall vA_{i}\to \forall vA \right ) & A5\\ (4) & \forall vA_{i}\to \forall vA & r_{mp} (2)(3) \\ (5) & \forall vA & r_{mp} (1)(5) \end{array} (1)(2)(3)(4)(5)vAiv(AiA)v(AiA)(vAivA)vAivAvA归纳假设归纳假设A5rmp(2)(3)rmp(1)(5)
综上所述,若 Γ ⊢ A \Gamma \vdash A ΓA,则 Γ ⊢ ∀ v A \Gamma \vdash \forall vA ΓvA

定理2.6 演绎定理

F C \mathsf{FC} FC中任意的公式集合 Γ \Gamma Γ和公式 A A A, B B B, Γ ∪ { A } ⊢ F C B \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } B Γ{A}FCB当且仅当 Γ ⊢ F C A → B \Gamma \vdash _{\mathsf{FC} } A\to B ΓFCAB
因为 P C PC PC F C FC FC的子系统.所以 P C PC PC的定理也包含在 F C FC FC中,演绎定理在 F C FC FC中也成立。

定理2.7 假言异位

F C \mathsf{FC} FC中任意的公式集合 Γ \Gamma Γ和公式 A A A, B B B, Γ ∪ { A } ⊢ F C ¬ B \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } \neg B Γ{A}FC¬B当且仅当 Γ ∪ { B } ⊢ F C ¬ A \Gamma \cup \left \{ B \right \} \vdash _{\mathsf{FC} } \neg A Γ{B}FC¬A
由演绎定理, Γ ∪ { A } ⊢ F C ¬ B \Gamma \cup \left \{ A \right \} \vdash _{\mathsf{FC} } \neg B Γ{A}FC¬B当且仅当 Γ ⊢ F C A → ¬ B \Gamma \vdash _{\mathsf{FC} } A\to \neg B ΓFCA¬B,
( 1 ) A → ¬ B ( 2 ) ( A → ¬ B ) → ( B → ¬ A ) A 3 ( 3 ) B → ¬ A r m p ( 1 ) ( 2 ) \begin{array}{l} (1) & A\to \neg B & \\ (2) & \left ( A\to \neg B \right ) \to \left ( B\to \neg A \right ) & A3 \\ (3) & B\to \neg A & r_{mp} (1)(2) \\ \end{array} (1)(2)(3)A¬B(A¬B)(B¬A)B¬AA3rmp(1)(2)
再次引用演绎定理, Γ ⊢ F C B → ¬ A \Gamma \vdash _{\mathsf{FC} } B\to \neg A ΓFCB¬A当且仅当 Γ ∪ { B } ⊢ F C ¬ A \Gamma \cup \left \{ B \right \} \vdash _{\mathsf{FC} } \neg A Γ{B}FC¬A

定理2.8 反证法

Γ ∪ { A } \Gamma \cup \left \{ A \right \} Γ{A}不一致,则 Γ ⊢ ¬ A \Gamma \vdash \neg A Γ¬A

定理2.9

F C \mathsf{FC} FC中任意的公式集合 Γ \Gamma Γ和公式 A A A, B B B,以及不在 Γ \Gamma Γ中任何公式自由出现的变元 v v v, Γ ∪ { A } ⊢ B \Gamma \cup \left \{ A \right \} \vdash B Γ{A}B蕴含 Γ ∪ { ∀ v A } ⊢ ∀ v B \Gamma \cup \left \{ \forall vA \right \} \vdash \forall vB Γ{vA}vB Γ ∪ { ∀ v A } ⊢ B \Gamma \cup \left \{ \forall vA \right \} \vdash B Γ{vA}B
由演绎定理, Γ ∪ { A } ⊢ B \Gamma \cup \left \{ A \right \} \vdash B Γ{A}B当且仅当 Γ ⊢ A → B \Gamma \vdash A\to B ΓAB,由全称推广定理, Γ ⊢ ∀ v ( A → B ) \Gamma \vdash \forall v \left ( A\to B \right ) Γv(AB),
( 1 ) ∀ v ( A → B ) ( 2 ) ∀ v ( A → B ) → ( ∀ v A → ∀ v B ) A 5 ( 3 ) ∀ v A → ∀ v B r m p ( 1 ) ( 2 ) \begin{array}{l} (1) & \forall v \left ( A\to B \right ) & \\ (2) & \forall v\left ( A\to B \right )\to \left ( \forall vA\to \forall vB \right ) &A5 \\ (3) & \forall vA\to \forall vB & r_{mp}(1)(2) \\ \end{array} (1)(2)(3)v(AB)v(AB)(vAvB)vAvBA5rmp(1)(2)
再次引用演绎定理, Γ ⊢ ∀ v A → ∀ v B \Gamma \vdash \forall vA \to \forall vB ΓvAvB当且仅当 Γ ∪ { ∀ v A } ⊢ ∀ v B \Gamma \cup \left \{ \forall vA \right \} \vdash \forall vB Γ{vA}vB
由定理2.1, Γ ⊢ ∀ v B → B \Gamma \vdash \forall vB \to B ΓvBB
( 1 ) ∀ v B ( 2 ) ∀ v B → B ( 3 ) B r m p ( 1 ) ( 2 ) \begin{array}{l} (1) & \forall vB & \\ (2) & \forall vB \to B & \\ (3) & B & r_{mp}(1)(2) \\ \end{array} (1)(2)(3)vBvBBBrmp(1)(2)

定理2.10 存在消除定理

Γ \Gamma Γ F C FC FC中任意公式集合,公式 A A A, B B B F C FC FC中任意公式,且变元 v v v不在 Γ \Gamma Γ的任意公式以及公式 B B B里自由出现,那么由 Γ ⊢ ∃ v A \Gamma \vdash \exists vA ΓvA( Γ ⊢ ¬ ∀ v ¬ A \Gamma \vdash \neg \forall v\neg A Γ¬∀v¬A )以及 Γ ∪ { A } ⊢ B \Gamma \cup \left \{ A \right \} \vdash B Γ{A}B蕴含 Γ ⊢ B \Gamma \vdash B ΓB
Γ ∪ { A } ⊢ B \Gamma \cup \left \{ A \right \} \vdash B Γ{A}B,由演绎定理, Γ ⊢ A → B \Gamma \vdash A\to B ΓAB
( 1 ) A → B ( 2 ) ( A → B ) → ( ¬ B → ¬ A ) A 3 ( 3 ) ¬ B → ¬ A r m p ( 1 ) ( 2 ) \begin{array}{l} (1) & A\to B & \\ (2) &\left ( A\to B \right ) \to \left (\neg B\to \neg A \right ) & A3\\ (3) & \neg B\to \neg A &r_{mp}(1)(2) \\ \end{array} (1)(2)(3)AB(AB)(¬B¬A)¬B¬AA3rmp(1)(2)
Γ ⊢ ¬ B → ¬ A \Gamma \vdash \neg B\to \neg A Γ¬B¬A,由演绎定理, Γ ∪ { ¬ B } ⊢ ¬ A \Gamma \cup \left \{ \neg B \right \} \vdash \neg A Γ{¬B}¬A
因为变元 v v v不在 Γ \Gamma Γ的任意公式以及公式 B B B里自由出现,所以根据全称推广定理, Γ ∪ { ¬ B } ⊢ ∀ v ¬ A \Gamma \cup \left \{ \neg B \right \} \vdash \forall v \neg A Γ{¬B}v¬A
由演绎定理, Γ ⊢ ¬ B → ∀ v ¬ A \Gamma \vdash \neg B\to \forall v\neg A Γ¬Bv¬A
( 1 ) ¬ B → ∀ v ¬ A ( 2 ) ( ¬ B → ∀ v ¬ A ) → ( ¬ ∀ v ¬ A → B ) A 3 ( 3 ) ¬ ∀ v ¬ A → B r m p ( 1 ) ( 2 ) ( 4 ) ¬ ∀ v ¬ A ( 5 ) B r m p ( 3 ) ( 4 ) \begin{array}{l} (1) & \neg B\to \forall v\neg A & \\ (2) &\left ( \neg B\to \forall v\neg A \right ) \to \left (\neg \forall v\neg A\to B \right ) & A3\\ (3) &\neg \forall v\neg A\to B &r_{mp}(1)(2) \\ (4) & \neg \forall v\neg A & \\ (5) & B & r_{mp}(3)(4) \end{array} (1)(2)(3)(4)(5)¬Bv¬A(¬Bv¬A)(¬∀v¬AB)¬∀v¬AB¬∀v¬ABA3rmp(1)(2)rmp(3)(4)

定理2.11 替换原理

设命题公式 A A A中截取的子公式 C C C满足 C ⇔ D C \Leftrightarrow D CD,若将 A A A中子公式 C C C的某些出现位置替换为 D D D,则替换后的公式 D D D满足 A ⇔ B A \Leftrightarrow B AB

定理2.12 易名原理

F C FC FC中,若 B B B A A A的变量易名式,且 B B B中替换后的变元不在 A A A中出现,则 B ⇔ A B\Leftrightarrow A BA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值