微分学<2>——导数的定义与求导法则

导数

导数的定义

定义2.1 导数

y = f ( x ) y = f \left ( x \right ) y=f(x)可微,则当 Δ x → 0 \Delta x\to 0 Δx0时,有 lim ⁡ Δ x → 0 ( Δ y Δ x ) = lim ⁡ Δ x → 0 ( f ( x + △ x ) − f ( x ) Δ x ) \lim _{\Delta x\to 0} \left ( \frac{\Delta y}{\Delta x} \right ) =\lim _{\Delta x\to 0} \left ( \frac{f\left ( x+\bigtriangleup x \right )-f\left ( x \right ) }{\Delta x} \right ) limΔx0(ΔxΔy)=limΔx0(Δxf(x+△x)f(x))存在且有限,则称函数 y = f ( x ) y = f \left ( x \right ) y=f(x)可导,称 lim ⁡ Δ x → 0 ( Δ y Δ x ) \lim _{\Delta x\to 0} \left ( \frac{\Delta y}{\Delta x} \right ) limΔx0(ΔxΔy) f ( x ) f \left ( x \right ) f(x)的导函数 f ′ ( x ) = d y d x = d f d x f^{\prime } \left ( x \right )=\frac{dy}{dx}=\frac{df}{dx} f(x)=dxdy=dxdf,函数 f ( x ) f \left ( x \right ) f(x) x 0 x_{0} x0处的导函数值称为 f ′ ( x 0 ) = d y d x ∣ x = x 0 = d f d x ∣ x = x 0 f^{\prime } \left ( x_{0} \right ) =\left . \frac{dy}{dx} \right | _{x=x_{0} }=\left . \frac{df}{dx} \right | _{x=x_{0} } f(x0)=dxdy x=x0=dxdf x=x0
若函数 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上每一点处处可导,则称函数 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导。

导数的几何意义

切线斜率

一元函数 y = f ( x ) y = f \left ( x \right ) y=f(x)在点 x 0 x_{0} x0处的导数值,其几何意义为一元函数 y = f ( x ) y = f \left ( x \right ) y=f(x)的图像上,过点 x 0 x_{0} x0的切线斜率,同样也可以结合实际理解成变化率(物理中的变化率,经济中的边际效益等实际问题都需要考虑变化率),点 x 0 x_{0} x0处的切线点斜式方程为:
y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y-y_{0} = f^{\prime } \left ( x_{0} \right ) \left ( x-x_{0} \right ) yy0=f(x0)(xx0)
lim ⁡ Δ x → 0 ( Δ y Δ x ) = lim ⁡ Δ x → 0 ( f ( x 0 + △ x ) − f ( x 0 ) Δ x ) \lim _{\Delta x\to 0} \left ( \frac{\Delta y}{\Delta x} \right ) =\lim _{\Delta x\to 0} \left ( \frac{f\left ( x_{0} +\bigtriangleup x \right )-f\left ( x_{0} \right ) }{\Delta x} \right ) limΔx0(ΔxΔy)=limΔx0(Δxf(x0+△x)f(x0))可视为连接两点 ( x 0 , y 0 ) \left ( x_{0},y_{0} \right ) (x0,y0), ( x 0 + Δ x , y 0 + Δ y ) \left ( x_{0}+\Delta x ,y_{0}+\Delta y \right ) (x0+Δx,y0+Δy)的割线,当 Δ x → 0 \Delta x\to 0 Δx0时,割线向切线无限趋近,割线斜率的极限值为 y = f ( x ) y = f \left ( x \right ) y=f(x)过点 x 0 x_{0} x0的切线斜率。

左右导数

定义2.2 单侧导数

lim ⁡ Δ x → 0 − ( Δ y Δ x ) = lim ⁡ Δ x → 0 − ( f ( x 0 + △ x ) − f ( x 0 ) Δ x ) \lim _{\Delta x\to 0^{-}} \left ( \frac{\Delta y}{\Delta x} \right ) =\lim _{\Delta x\to 0^{-}} \left ( \frac{f\left ( x_{0} +\bigtriangleup x \right )-f\left ( x_{0} \right ) }{\Delta x} \right ) limΔx0(ΔxΔy)=limΔx0(Δxf(x0+△x)f(x0))称为 f ( x ) f \left ( x \right ) f(x)的左导数,记为 f − ( x 0 ) f_{-}\left ( x_{0} \right ) f(x0)
lim ⁡ Δ x → 0 + ( Δ y Δ x ) = lim ⁡ Δ x → 0 + ( f ( x 0 + △ x ) − f ( x 0 ) Δ x ) \lim _{\Delta x\to 0^{+}} \left ( \frac{\Delta y}{\Delta x} \right ) =\lim _{\Delta x\to 0^{+}} \left ( \frac{f\left ( x_{0} +\bigtriangleup x \right )-f\left ( x_{0} \right ) }{\Delta x} \right ) limΔx0+(ΔxΔy)=limΔx0+(Δxf(x0+△x)f(x0))称为 f ( x ) f \left ( x \right ) f(x)的右导数,记为 f + ( x 0 ) f_{+}\left ( x_{0} \right ) f+(x0)
若函数 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,在左端点 a a a处右导数 f + ( a ) f_{+} \left ( a \right ) f+(a)存在,在右端点 b b b处左导数 f − ( b ) f_{-} \left ( b \right ) f(b)存在,则称函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上可导。
导数存在当且仅当左右导数存在,有限且相等。
若点 x 0 x_{0} x0处的左右导数存在,有限,但不相等,此时函数图像中 x 0 x_{0} x0处出现尖锐的拐点,导函数图像中 x 0 x_{0} x0处出现跳跃间断点,反映在物理世界中,就是变化率瞬间出现突变,就好像电子从低能级轨道瞬时跃迁到高能级轨道并放出能量(光子)一样,中间并不需要在两个能级中的空间中移动。
下面介绍一种处处连续而处处不可导的Weierstrass函数,Weierstrass函数呈现一种"分形"的特点,在当前尺度下,Weierstrass函数图像中会出现一些较大的尖角,较小的锯齿,和相对比较"平滑"的曲线,而将看起来"平滑"的曲线局部放大(或者提高图像精度),函数曲线会自动生成相似的尖角填补原先曲线的细节,以此类推,任何大尺度下的平滑处都能在小尺度上复现自身整体的崎岖,这种整体与部分的自相似性使得Weierstrass函数的每一处均不可导。

导数的四则运算

定理2.1 导数的四则运算法则

(1) ( α f ( x ) ± β g ( x ) ) ′ = α f ′ ( x ) ± β g ′ ( x ) \left ( \alpha f\left ( x \right ) \pm \beta g\left ( x \right ) \right )^{\prime } =\alpha f^{\prime } \left ( x \right )\pm \beta g^{\prime } \left ( x \right ) (αf(x)±βg(x))=αf(x)±βg(x)
(2) ( f ( x ) g ( x ) ) ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \left ( f\left ( x \right ) g\left ( x \right ) \right ) ^{\prime } =f^{\prime }\left ( x \right ) g\left ( x \right )+f\left ( x \right )g^{\prime } \left ( x \right ) (f(x)g(x))=f(x)g(x)+f(x)g(x)
(3) ( f ( x ) g ( x ) ) ′ ( g ( x ) ≠ 0 ) = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \left ( \frac{f\left ( x \right ) }{g\left ( x \right ) } \right )^{\prime } (g\left ( x \right )\ne 0 ) = \frac{f^{\prime }\left ( x \right ) g\left ( x \right )-f\left ( x \right )g^{\prime } \left ( x \right )}{g^{2}\left ( x \right ) } (g(x)f(x))(g(x)=0)=g2(x)f(x)g(x)f(x)g(x)

(1)
以加法为例:
( α f ( x ) + β g ( x ) ) ′ = lim ⁡ Δ x → 0 ( ( α f ( x + Δ x ) + β g ( x + Δ x ) ) − ( α f ( x ) + β g ( x ) ) Δ x ) = lim ⁡ Δ x → 0 ( α ( f ( x + Δ x ) − f ( x ) Δ x ) + β ( g ( x + Δ x ) − g ( x ) Δ x ) ) = α ( lim ⁡ Δ x → 0 ( f ( x + Δ x ) − f ( x ) Δ x ) ) + β ( lim ⁡ Δ x → 0 ( g ( x + Δ x ) − g ( x ) Δ x ) ) = α f ′ ( x ) + β g ′ ( x ) \begin{array}{l} & \left ( \alpha f\left ( x \right ) + \beta g\left ( x \right ) \right )^{\prime } \\ = & \lim _{\Delta x\to 0} \left ( \frac{\left ( \alpha f\left ( x+\Delta x \right )+\beta g\left ( x+\Delta x \right ) \right ) -\left ( \alpha f\left ( x \right ) + \beta g\left ( x \right ) \right ) }{\Delta x} \right ) \\ = & \lim _{\Delta x\to 0} \left ( \alpha \left ( \frac{ f\left ( x+\Delta x \right ) -f\left ( x \right ) }{\Delta x} \right ) + \beta \left ( \frac{ g\left ( x+\Delta x \right ) -g\left ( x \right ) }{\Delta x} \right ) \right ) \\ = & \alpha \left ( \lim _{\Delta x\to 0} \left ( \frac{ f\left ( x+\Delta x \right ) -f\left ( x \right ) }{\Delta x} \right ) \right )+ \beta\left ( \lim _{\Delta x\to 0} \left ( \frac{ g\left ( x+\Delta x \right ) -g\left ( x \right ) }{\Delta x} \right ) \right ) \\ = & \alpha f^{\prime } \left ( x \right )+\beta g^{\prime }\left ( x \right ) \end{array} ====(αf(x)+βg(x))limΔx0(Δx(αf(x+Δx)+βg(x+Δx))(αf(x)+βg(x)))limΔx0(α(Δxf(x+Δx)f(x))+β(Δxg(x+Δx)g(x)))α(limΔx0(Δxf(x+Δx)f(x)))+β(limΔx0(Δxg(x+Δx)g(x)))αf(x)+βg(x)
(2)
( f ( x ) ⋅ g ( x ) ) ′ = lim ⁡ Δ x → 0 [ f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x ] = lim ⁡ Δ x → 0 [ f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x + Δ x ) + f ( x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x ] = lim ⁡ Δ x → 0 g ( x + Δ x ) ⋅ lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x + f ( x ) ⋅ lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \begin{array}{l} & \left ( f\left ( x \right )\cdot g\left ( x \right ) \right )^{\prime }\\ =& \lim _{\Delta x\to 0 } \left [ \frac{f\left ( x+\Delta x \right )g\left ( x+\Delta x \right )-f\left ( x \right )g\left ( x \right ) }{\Delta x} \right ] \\ =& \lim _{\Delta x\to 0 } \left [ \frac{f\left ( x+\Delta x \right )g\left ( x+\Delta x \right )-f\left ( x \right )g\left ( x+\Delta x \right ) +f\left ( x \right )g\left ( x+\Delta x \right ) -f\left ( x \right )g\left ( x \right ) }{\Delta x} \right ] \\ =& \lim _{\Delta x\to 0 }g\left ( x+\Delta x \right ) \cdot \lim _{\Delta x\to 0} \frac{f\left ( x+\Delta x \right )-f\left ( x \right ) }{\Delta x } + f\left ( x\right ) \cdot \lim _{\Delta x\to 0} \frac{g\left ( x+\Delta x \right )-g\left ( x \right ) }{\Delta x } \\ =& f^{\prime }\left ( x \right ) g\left ( x \right )+f\left ( x \right )g^{\prime } \left ( x \right ) \end{array} ====(f(x)g(x))limΔx0[Δxf(x+Δx)g(x+Δx)f(x)g(x)]limΔx0[Δxf(x+Δx)g(x+Δx)f(x)g(x+Δx)+f(x)g(x+Δx)f(x)g(x)]limΔx0g(x+Δx)limΔx0Δxf(x+Δx)f(x)+f(x)limΔx0Δxg(x+Δx)g(x)f(x)g(x)+f(x)g(x)
(3)
先证明 ( 1 g ( x ) ) ′ = − g ′ ( x ) g 2 ( x ) \left ( \frac{1}{g\left ( x \right ) } \right ) ^{\prime } =-\frac{g^{\prime }\left ( x \right ) }{g^{2} \left ( x \right ) } (g(x)1)=g2(x)g(x):
( 1 g ( x ) ) ′ = lim ⁡ Δ x → 0 1 g ( x + Δ x ) − 1 g ( x ) Δ x = lim ⁡ Δ x → 0 g ( x ) − g ( x + Δ x ) g ( x + Δ x ) g ( x ) Δ x = lim ⁡ Δ x → 0 1 g ( x ) g ( x + Δ x ) ⋅ lim ⁡ Δ x → 0 g ( x ) − g ( x + Δ x ) Δ x = − g ′ ( x ) g 2 ( x ) \begin{array}{l} &\left ( \frac{1}{g\left ( x \right ) } \right ) ^{\prime } \\ =& \lim _{\Delta x\to 0} \frac{\frac{1}{g\left ( x+\Delta x \right ) }-\frac{1}{g\left ( x \right ) } }{\Delta x} \\ =& \lim _{\Delta x\to 0} \frac{g\left ( x \right )-g\left ( x+\Delta x \right ) }{g\left ( x+\Delta x \right )g\left ( x \right )\Delta x } \\ =& \lim _{\Delta x\to 0}\frac{1}{g\left ( x \right )g\left ( x+\Delta x \right ) } \cdot \lim _{\Delta x\to 0}\frac{g\left ( x \right )-g\left ( x+\Delta x \right )}{\Delta x}\\ =&-\frac{g^{\prime }\left ( x \right ) }{g^{2} \left ( x \right ) } \end{array} ====(g(x)1)limΔx0Δxg(x+Δx)1g(x)1limΔx0g(x+Δx)g(x)Δxg(x)g(x+Δx)limΔx0g(x)g(x+Δx)1limΔx0Δxg(x)g(x+Δx)g2(x)g(x)
( f ( x ) g ( x ) ) ′ = ( f ( x ) ⋅ ( g ( x ) ) − 1 ) ′ = f ′ ( x ) ⋅ ( g ( x ) ) − 1 + f ( x ) ⋅ [ ( g ( x ) ) − 1 ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \begin{array}{l} & \left ( \frac{f\left ( x \right ) }{g\left ( x \right ) } \right )^{\prime } \\ =& \left ( f\left ( x \right ) \cdot \left ( g\left ( x \right ) \right )^{-1} \right )^{\prime }\\ =& f^{\prime }\left ( x \right )\cdot \left ( g\left ( x \right ) \right ) ^{-1} +f\left ( x \right ) \cdot\left [ \left ( g\left ( x \right ) \right ) ^{-1} \right ]^{\prime } \\ =& \frac{f^{\prime }\left ( x \right ) g\left ( x \right )-f\left ( x \right )g^{\prime } \left ( x \right )}{g^{2}\left ( x \right ) }\\ \end{array} ===(g(x)f(x))(f(x)(g(x))1)f(x)(g(x))1+f(x)[(g(x))1]g2(x)f(x)g(x)f(x)g(x)

反函数的导数

定理2.2 反函数求导法则

若函数 f ( x ) ≠ 0 f\left ( x \right )\neq 0 f(x)=0在开区间 ( a , b ) \left ( a,b \right ) (a,b)上连续,严格单调增加(减少)且可导,设 α = min ⁡ { f ( a + ) , f ( b − ) } \alpha =\min\left \{ f\left ( a^{+} \right ),f\left ( b^{-} \right ) \right \} α=min{f(a+),f(b)}, β = max ⁡ { f ( a + ) , f ( b − ) } \beta =\max \left \{ f\left ( a^{+} \right ),f\left ( b^{-} \right ) \right \} β=max{f(a+),f(b)}则反函数 x = f − 1 ( y ) x=f^{-1}\left ( y \right ) x=f1(y)在开区间 ( α , β ) \left ( \alpha ,\beta \right ) (α,β)上可导,且 x = f − 1 ( y ) x=f^{-1}\left ( y \right ) x=f1(y)的导数为 d f − 1 d y = 1 f ′ ( x ) = 1 d f d x \frac{df^{-1} }{dy} =\frac{1}{f^{\prime } \left ( x \right ) }=\frac{1}{\frac{df}{dx} } dydf1=f(x)1=dxdf1

由反函数存在定理, f ( x ) f\left ( x \right ) f(x)的反函数 x = f − 1 ( y ) x=f^{-1}\left ( y \right ) x=f1(y)存在,且保持函数 f ( x ) f\left ( x \right ) f(x)的严格单调性, Δ y ≠ 0 ⇔ Δ x ≠ 0 \Delta y\ne 0\Leftrightarrow \Delta x\ne 0 Δy=0Δx=0,
根据反函数连续性定理, f ( x ) f\left ( x \right ) f(x)的反函数 x = f − 1 ( y ) x=f^{-1}\left ( y \right ) x=f1(y) [ α , β ] \left [ \alpha ,\beta \right ] [α,β]上连续,由连续函数定义, Δ y → 0 ⇔ Δ x → 0 \Delta y\to 0\Leftrightarrow \Delta x\to 0 Δy0Δx0,
根据导数定义, d f − 1 d x = lim ⁡ Δ y → 0 f − 1 ( y + Δ y ) − f − 1 ( y ) Δ y \frac{df^{-1} }{dx}=\lim _{\Delta y\to 0}\frac{f^{-1}\left ( y+\Delta y \right ) -f^{-1}\left ( y \right ) }{\Delta y} dxdf1=limΔy0Δyf1(y+Δy)f1(y),
可得出以下关系:
{ f ( x + Δ x ) = y + Δ y f − 1 ( y + Δ y ) = x + Δ x \left\{\begin{matrix} f\left ( x+\Delta x \right )=y+\Delta y \\ f^{-1} \left ( y+\Delta y \right )=x+\Delta x \end{matrix}\right. {f(x+Δx)=y+Δyf1(y+Δy)=x+Δx
d f − 1 d x = lim ⁡ Δ x → 0 ( x + Δ x − x f ( x + Δ x ) − f ( x ) ) = lim ⁡ Δ x → 0 ( Δ x f ( x + Δ x ) − f ( x ) ) = lim ⁡ Δ x → 0 ( 1 f ( x + △ x ) − f ( x ) Δ x ) = 1 d f d x \begin{array}{l} &\frac{df^{-1} }{dx} \\ =&\lim _{\Delta x\to 0}\left ( \frac{ x+\Delta x -x }{f\left ( x+\Delta x \right )-f\left ( x \right ) } \right ) \\ =&\lim _{\Delta x\to 0}\left ( \frac{\Delta x}{f\left ( x+\Delta x \right )-f\left ( x \right )} \right ) \\ =&\lim _{\Delta x\to 0}\left ( \frac{1}{\frac{f\left ( x+\bigtriangleup x \right )-f\left ( x \right ) }{\Delta x} } \right ) \\ =&\frac{1}{\frac{df}{dx} } \\ \end{array} ====dxdf1limΔx0(f(x+Δx)f(x)x+Δxx)limΔx0(f(x+Δx)f(x)Δx)limΔx0(Δxf(x+△x)f(x)1)dxdf1
于是上述结论成立。

复合函数的导数

定理2.3 复合函数求导法则

u = g ( x ) u=g\left ( x \right ) u=g(x) x = x 0 x=x_{0} x=x0可导, g ( x 0 ) = u 0 g\left ( x_{0} \right )=u_{0} g(x0)=u0,同时 y = f ( u ) 在 u = u 0 y=f\left ( u \right )在u=u_{0} y=f(u)u=u0处可导,则 f ( g ( x ) ) 在 x = x 0 f\left ( g\left ( x \right ) \right )在x=x_{0} f(g(x))x=x0可导,且 ( f ( g ( x 0 ) ) ) ′ = ( d y d u ⋅ d u d x ) ∣ x = x 0 \left ( f\left ( g\left ( x_{0} \right ) \right ) \right )^{\prime } =\left (\frac{dy}{du}\cdot \frac{du}{dx} \right ) \mid _{x=x_{0} } (f(g(x0)))=(dudydxdu)x=x0

由可导的定义, y = f ( u ) 在 u = u 0 y=f\left ( u \right )在u=u_{0} y=f(u)u=u0处可微,将其表示为 Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + o ( Δ u ) \Delta y=f\left ( u_{0}+\Delta u \right )-f\left ( u_{0} \right )=f^{\prime } \left ( u_{0} \right )\Delta u+ o \left ( \Delta u \right ) Δy=f(u0+Δu)f(u0)=f(u0)Δu+o(Δu),
构造函数
α = { o ( Δ u ) Δ u Δ u ≠ 0 0 Δ u = 0 \alpha = \left\{\begin{matrix} \frac{ o \left ( \Delta u \right ) }{\Delta u} & \Delta u\ne 0 \\ 0 & \Delta u=0 \end{matrix}\right. α={Δuo(Δu)0Δu=0Δu=0
满足 lim ⁡ Δ u → 0 α = 0 \lim _{\Delta u\to 0} \alpha=0 limΔu0α=0
由连续函数定义, Δ u → 0 ⇔ Δ x → 0 \Delta u\to 0\Leftrightarrow \Delta x\to 0 Δu0Δx0,使得即使当 Δ u = 0 \Delta u=0 Δu=0时, lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 ( f ′ ( u 0 ) ⋅ Δ u Δ x + α Δ u Δ x ) = f ′ ( u 0 ) ⋅ lim ⁡ Δ x → 0 ( Δ u Δ x ) = ( d y d u ⋅ d u d x ) ∣ x = x 0 \lim _{\Delta x\to 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x\to 0} \left ( f^{\prime } \left ( u_{0} \right ) \cdot \frac{\Delta u}{\Delta x} +\frac{\alpha \Delta u}{\Delta x} \right )=f^{\prime } \left ( u_{0} \right )\cdot \lim _{\Delta x\to 0}\left (\frac{ \Delta u}{\Delta x} \right )=\left (\frac{dy}{du}\cdot \frac{du}{dx}\right )\mid _{x=x_{0} } limΔx0ΔxΔy=limΔx0(f(u0)ΔxΔu+ΔxαΔu)=f(u0)limΔx0(ΔxΔu)=(dudydxdu)x=x0

  • 26
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值