函数极限<3>——连续函数

连续函数

连续函数的定义

定义3.1 连续函数

若函数 f ( x ) f\left ( x \right ) f(x)在邻域 U ˚ ( x 0 , δ ) \mathring{U} \left ( x_{0},\delta \right ) U˚(x0,δ)上有定义,且 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( ∣ x − x 0 ∣ < δ ) \forall x\left ( \left | x-x_{0} \right |<\delta \right ) x(xx0<δ), ∣ f ( x ) − f ( x 0 ) ∣ < ε \left | f\left ( x \right )- f\left ( x_{0} \right ) \right |<\varepsilon f(x)f(x0)<ε,也就是 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim _{x\to x_{0} } f\left ( x \right ) =f\left ( x_{0} \right ) limxx0f(x)=f(x0),则称 f ( x ) f\left ( x \right ) f(x)在点 x 0 x_{0} x0处连续,或 x 0 x_{0} x0 f ( x ) f\left ( x \right ) f(x)的一个连续点。

定义3.2 开区间上的连续函数

若函数 f ( x ) f\left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上每一点都连续,则称 f ( x ) f\left ( x \right ) f(x) ( a , b ) \left ( a,b \right ) (a,b)上连续。

定义3.3 单侧连续

lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\to x_{0}^{+}} f\left ( x \right )=f\left ( x_{0} \right ) limxx0+f(x)=f(x0),即 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( − δ < x − x 0 ≤ 0 ) \forall x\left ( -\delta < x-x_{0} \le 0 \right ) x(δ<xx00), ∣ f ( x ) − f ( x 0 ) ∣ < ε \left | f\left ( x \right )- f\left ( x_{0} \right ) \right |<\varepsilon f(x)f(x0)<ε,则称 f ( x ) f\left ( x \right ) f(x)在点 x 0 x_{0} x0处左连续,或 x 0 x_{0} x0 f ( x ) f\left ( x \right ) f(x)的一个左连续点。
lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim _{x \to x_{0}^{-}} f \left ( x \right )=f\left ( x_{0} \right ) limxx0f(x)=f(x0),即 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 ≤ x − x 0 < δ ) \forall x\left ( 0 \le x-x_{0} < \delta \right ) x(0xx0<δ), ∣ f ( x ) − f ( x 0 ) ∣ < ε \left | f\left ( x \right )- f\left ( x_{0} \right ) \right |<\varepsilon f(x)f(x0)<ε,则称 f ( x ) f\left ( x \right ) f(x)在点 x 0 x_{0} x0处右连续,或 x 0 x_{0} x0 f ( x ) f\left ( x \right ) f(x)的一个右连续点。

定义3.4 闭区间上的连续函数

f ( x ) f \left ( x \right ) f(x)在开区间 ( a , b ) \left ( a,b \right ) (a,b)上每一点都连续,且在右端点左连续,左端点右连续,则函数 f ( x ) f \left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续。

连续函数的性质

定理3.1 四则运算性质

连续函数的四则运算结果也是连续函数。

不连续点的分类

定义3.5 跳跃间断点

左右极限存在但不相等。

定义3.6 无穷间断点 振荡间断点

左右极限中至少有一个不存在,又可分为无穷间断点或振荡间断点。

定义3.7 可去间断点

左右极限存在且相等,但不等于此处函数值,或此处函数无定义。

反函数的连续性

定理3.2 反函数存在定理

f ( x ) f\left ( x \right ) f(x) D f D_{f} Df上严格单调增加(减少),则存在 f ( x ) f\left ( x \right ) f(x)的反函数 f − 1 ( y ) = x f^{-1} \left ( y \right )=x f1(y)=x, y ∈ R f y\in R_{f} yRf,且 f − 1 ( y ) f^{-1} \left ( y \right ) f1(y)也严格单调增加(减少)。

不妨设 f ( x ) f\left ( x \right ) f(x) D f D_{f} Df上严格单调增加。
f ( x ) f\left ( x \right ) f(x)满足 x 1 ≠ x 2 ⇔ y 1 ≠ y 2 x_{1}\ne x_{2}\Leftrightarrow y_{1}\ne y_{2} x1=x2y1=y2,即 f ( x ) f\left ( x \right ) f(x)具有单射性,也就是对任意原象 y y y,有唯一的 x x x与其对应,所以存在从 y y y x x x的反函数映射。
y 1 > y 2 y_{1}>y_{2} y1>y2,由映射定义, x 1 = f − 1 ( y 1 ) ≠ x 2 = f − 1 ( y 2 ) x_{1}=f^{-1}\left ( y_{1} \right )\neq x_{2}=f^{-1}\left ( y_{2} \right ) x1=f1(y1)=x2=f1(y2),
又根据 f ( x ) f\left ( x \right ) f(x) D f D_{f} Df上严格单调增加,则 x 1 > x 2 x_{1}>x_{2} x1>x2,也就是 y 1 > y 2 ⇒ x 1 > x 2 y_{1}>y_{2} \Rightarrow x_{1}>x_{2} y1>y2x1>x2, f − 1 ( y ) f^{-1} \left ( y \right ) f1(y)也严格单调增加。

定理3.3 反函数连续性定理

y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续且严格单调增加,设 f ( a ) = α f\left ( a \right )=\alpha f(a)=α, f ( b ) = β f\left ( b \right )=\beta f(b)=β,则 f − 1 ( y ) f^{-1}\left ( y \right ) f1(y) [ α , β ] \left [ \alpha ,\beta \right ] [α,β]上连续。

由反函数存在定理,反函数 f − 1 ( y ) f^{-1}\left ( y \right ) f1(y)必定存在,且严格单调增加。
γ ∈ [ α , β ] \gamma \in \left [ \alpha ,\beta \right ] γ[α,β],构造集合 S = { x ∣ x ∈ [ a , b ] , f ( x ) < γ } S=\left \{ x|x\in \left [ a,b \right ],f\left ( x \right )<\gamma \right \} S={xx[a,b],f(x)<γ},
由确界存在定理,集合 S S S的上确界存在,记为 x 0 x_{0} x0,
断言:
(1) ∀ x < x 0 \forall x<x_{0} x<x0, f ( x ) < γ f\left ( x \right )<\gamma f(x)<γ
反证法,设 ∃ x 1 \exists x_{1} x1: x 1 < x 0 x_{1}<x_{0} x1<x0, f ( x 1 ) ≥ γ f\left ( x_{1} \right )\ge \gamma f(x1)γ,
因为 y = f ( x ) y=f\left ( x \right ) y=f(x)严格单调增加,所以 x 1 < x 0 ⇔ f ( x 1 ) < f ( x 0 ) x_{1}<x_{0}\Leftrightarrow f\left ( x_{1} \right ) <f\left ( x_{0} \right ) x1<x0f(x1)<f(x0),
综上所述, ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( x ) < γ ≤ f ( x 1 ) < f ( x 0 ) f\left ( x \right )<\gamma \le f\left ( x_{1} \right ) <f\left ( x_{0} \right ) f(x)<γf(x1)<f(x0),这与 x 0 x_{0} x0 S S S的最小上界矛盾,所以 ∀ x < x 0 \forall x<x_{0} x<x0, f ( x ) < γ f\left ( x \right )<\gamma f(x)<γ
(2) ∀ x > x 0 \forall x>x_{0} x>x0, f ( x ) > γ f\left ( x \right )>\gamma f(x)>γ
反证法,设 ∃ x 1 \exists x_{1} x1: x 1 > x 0 x_{1}>x_{0} x1>x0, f ( x 1 ) ≤ γ f\left ( x_{1} \right )\le \gamma f(x1)γ,
因为 y = f ( x ) y=f\left ( x \right ) y=f(x)严格单调增加,所以 x 1 > x 0 ⇔ f ( x 1 ) > f ( x 0 ) x_{1}>x_{0}\Leftrightarrow f\left ( x_{1} \right ) >f\left ( x_{0} \right ) x1>x0f(x1)>f(x0),
综上所述, ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( x 0 ) < f ( x 1 ) ≤ γ f\left ( x_{0} \right )<f\left ( x_{1} \right ) \le \gamma f(x0)<f(x1)γ,这与 x 0 x_{0} x0 S S S的上界矛盾,所以 ∀ x > x 0 \forall x>x_{0} x>x0, f ( x ) > γ f\left ( x \right )> \gamma f(x)>γ
引用函数极限的保不等号性,则有 lim ⁡ x → x 0 − f ( x ) ≤ γ ≤ lim ⁡ x → x 0 + f ( x ) \lim _{x\to x_{0}^{-} } f\left ( x \right ) \le \gamma\le \lim _{x\to x_{0}^{+} } f\left ( x \right ) limxx0f(x)γlimxx0+f(x),
根据单侧极限的定义和连续函数的定义, lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 f ( x ) = γ = f ( x 0 ) \lim _{x\to x_{0}^{-} } f\left ( x \right )=\lim _{x\to x_{0}^{+} } f\left ( x \right )=\lim _{x\to x_{0} } f\left ( x \right )=\gamma=f\left ( x_{0} \right ) limxx0f(x)=limxx0+f(x)=limxx0f(x)=γ=f(x0)
由于 γ \gamma γ的任意性,所以 R f = [ α , β ] R_{f }=\left [ \alpha ,\beta \right ] Rf=[α,β],即 D f − 1 = [ α , β ] D_{f^{-1} }=\left [ \alpha ,\beta \right ] Df1=[α,β]
现在取 y 0 ∈ [ α , β ] y_{0}\in \left [ \alpha ,\beta \right ] y0[α,β],由于 y = f ( x ) y=f \left ( x \right ) y=f(x)的单射性,有且只有唯一的 x 0 x_{0} x0与之对应,
∀ ε > 0 \forall \varepsilon >0 ε>0,因为函数 f ( x ) f \left ( x \right ) f(x)在闭区间 [ a , b ] \left [a,b \right ] [a,b]上连续且严格单调增加,所以当自变量 x x x的邻域为 ( x 0 − ε , x 0 + ε ) \left ( x_{0}-\varepsilon ,x_{0}+\varepsilon \right ) (x0ε,x0+ε)时, x x x映射后的邻域为 ( f ( x 0 − ε ) , f ( x 0 + ε ) ) \left ( f \left ( x_{0}-\varepsilon \right ), f \left ( x_{0}+\varepsilon \right ) \right ) (f(x0ε),f(x0+ε)),
δ = min ⁡ { ∣ f ( x 0 − ε ) − f ( x 0 ) ∣ , ∣ f ( x 0 + ε ) − f ( x 0 ) ∣ } \delta =\min \left \{ \left | f \left ( x_{0}-\varepsilon \right )-f\left ( x_{0} \right ) \right | , \left | f \left ( x_{0}+\varepsilon \right )-f\left ( x_{0} \right ) \right | \right \} δ=min{f(x0ε)f(x0),f(x0+ε)f(x0)}, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ y ( ∣ y − y 0 ∣ < δ ) \forall y\left ( \left | y-y_{0} \right |<\delta \right ) y(yy0<δ), ∣ f − 1 ( y ) − f − 1 ( y 0 ) ∣ = ∣ x − x 0 ∣ < ε \left | f^{-1}\left ( y \right )-f^{-1}\left ( y_{0} \right )\right |=\left | x-x_{0} \right |<\varepsilon f1(y)f1(y0) =xx0<ε, f − 1 ( y ) f^{-1}\left ( y \right ) f1(y) [ α , β ] \left [ \alpha ,\beta \right ] [α,β]上连续。

复合函数的连续性

定理3.4 复合函数连续性定理

函数 u = g ( x ) u=g\left ( x \right ) u=g(x)在点 x 0 x_{0} x0处连续, g ( x 0 ) = u 0 g\left ( x_{0} \right )= u_{0} g(x0)=u0, f ( u ) f\left ( u \right ) f(u) u 0 u_{0} u0处连续,则 f ∘ g ( x ) f\circ g\left ( x \right ) fg(x) x 0 x_{0} x0连续。

由连续函数的定义, ∀ δ > 0 \forall \delta >0 δ>0, ∃ η > 0 \exists \eta >0 η>0: ∀ x ( x − x 0 < η ) \forall x \left ( x-x_{0}<\eta \right ) x(xx0<η), ∣ g ( x ) − g ( x 0 ) ∣ = ∣ g ( x ) − u 0 ∣ < δ \left | g\left ( x \right )-g\left ( x_{0} \right ) \right |=\left | g\left ( x \right )-u_{0} \right |<\delta g(x)g(x0)=g(x)u0<δ,
同理, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ u ( u − u 0 < δ ) \forall u \left ( u-u_{0}<\delta \right ) u(uu0<δ), ∣ f ( u ) − f ( u 0 ) ∣ < ε \left | f\left ( u \right ) -f\left ( u_{0} \right ) \right |<\varepsilon f(u)f(u0)<ε,
令上文中 g ( x ) = u g\left ( x \right )=u g(x)=u,则 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ η > 0 \exists \eta >0 η>0: ∀ x ( g ( x ) − g ( x 0 ) < η ) \forall x \left ( g\left ( x \right )-g\left ( x_{0} \right )<\eta \right ) x(g(x)g(x0)<η), ∣ f ( g ( x ) ) − f ( g ( x 0 ) ) ∣ < ε \left | f\left ( g\left ( x \right ) \right ) -f\left ( g \left ( x_{0} \right ) \right ) \right |<\varepsilon f(g(x))f(g(x0))<ε

  • 21
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值