机器学习案例分析--信用卡案例

问题描述:        

2021 年,与信用卡欺诈相关的损失超过 120 亿美元,同比增长近 11%。就重大财务损失、信任和信誉而言,这是银行、客户和商户面临的一个令人担忧的问题。         电子商务相关欺诈一直在以约 13% 的复合年增长率 (CAGR) 增加。由于欺诈性信用卡交易急剧增加,在交易时检测欺诈行为对于帮助消费者和银行非常重要。机器学习可以通过训练信用卡交易模型,然后使用这些模型更快、更准确地检测欺诈交易,在预测欺诈方面发挥至关重要的作用。

方案一:下采样的方法训练模型

数据获取与预处理

pythonCopy code
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')

# 加载数据文件
df = pd.read_csv("creditcard.csv")

# 查看数据内容
df.head()

Untitled

上图展示的数据除了"Amount"列外,都已经过标准化处理。

数据预处理

检查是否有缺失值:

pythonCopy code
# 检查是否有空值
df.isnull().sum()

未发现缺失值。

查看数据类型:

pythonCopy code
# 查看数据类型
df.dtypes

数据分布可视化

pythonCopy code
# 查看Class分布
labels = ['Not Fraud', 'Fraud']  # 标签
size = df['Class'].value_counts()  # 统计class的类别数量
colors = ['lightgreen', 'orange']  # 颜色
explode = [0, 0.1]  # 饼图突出
plt.figure(figsize=(9, 9))  # 画布大小
plt.pie(size, colors=colors, explode=explode, labels=labels, shadow=True, autopct='%.2f%%')  # 饼图参数设置
plt.axis('off')  # 关闭坐标轴
plt.title("Data Distribution")  # 标题
plt.legend()  # 显示标签
plt.show()  # 显示

从图中可见,欺诈数据占比非常小。如果使用下采样方法训练模型,存在过拟合的风险,导致模型泛化能力差。

优化建议

为了避免过拟合,可以考虑以下优化措施:

  1. 使用其他采样方法: 考虑使用过采样或合成少数类过采样(SMOTE)等方法,以增加欺诈数据的样本量,提高模型的泛化能力。
  2. 特征工程: 考虑引入更多特征,或者对现有特征进行组合,以提高模型对数据的表征能力。
  3. 模型选择: 尝试不同的模型,比如集成学习方法(如随机森林或梯度提升树),以提高模型性能。
  4. 调整模型参数: 对所选模型进行参数调整,以达到更好的性能。
  5. 交叉验证: 使用交叉验证来评估模型的性能,防止过度拟合。

方案二:SMOTE(过采样)处理数据不平衡

如果不处理数据的不平衡性,使用这些数据进行训练,模型可能只会学到样本数量较多的类别,而对于样本数量较少的类别学习不足,导致模型无法准确预测。

数据获取与预处理

pythonCopy code
import pandas as pd
import nu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值