曲与线性(微积分笔记)

参数方程形式定积分

∫ x 1 x 2 y d x = ∫ x 1 x 2 y ( t ) d x ( t ) = ∫ t 1 t 2 y ( t ) x ′ ( t ) d t , 其 中 x 1 = x ( t 1 ) , x 2 = x ( t 2 ) \int_{x_1}^{x_2} y \mathrm{d}x = \int_{x_1}^{x_2} y(t) \mathrm{d}x(t) = \int_{t_1}^{t_2} y(t)x'(t)\mathrm{d}t, \\ 其中x_1 = x(t_1), x_2 = x(t_2) x1x2ydx=x1x2y(t)dx(t)=t1t2y(t)x(t)dt,x1=x(t1),x2=x(t2)
其实参数形式的定积分功能更强大。
首先,由牛顿莱布尼茨公式可知
∫ x 0 x 1 y d x = − ∫ x 1 x 0 y d x \int_{x_0}^{x_1}y\mathrm{d}x = -\int_{x_1}^{x_0}y\mathrm{d}x x0x1ydx=x1x0ydx
所以对于曲线 y = y ( t ) , x = x ( t ) y = y(t), x = x(t) y=y(t),x=x(t)

∫ t 1 t 2 y ( t ) x ′ ( t ) d t \int_{t_1}^{t_2} y(t)x'(t)\mathrm{d}t t1t2y(t)x(t)dt 代表从 t 1 t_1 t1 对应的点出发走到 t 2 t_2 t2 对应的点之间的曲线的定积分,如果曲线的方向是沿着x增大的方向,则正负号跟普通定积分一样,如果沿x减小的方向则要加一个负号。

如下图,t从0到 + ∞ +\infty + ,曲线沿着红色箭头延伸,绿色部分为正,黄色部分为负。
在这里插入图片描述


f ( x , y ) = 2 x y x 2 + y 2 二 重 极 限 不 存 在 , 两 个 累 次 极 限 均 存 在 且 都 为 0 f(x,y) = \frac{2xy}{x^2+y^2}二重极限不存在,两个累次极限均存在且都为0 f(x,y)=x2+y22xy0
在这里插入图片描述


f ( x , y ) = { x s i n 1 y 0 f(x,y) = \left\{ \begin{aligned} &xsin\frac{1}{y}\\ &0 \end{aligned} \right. f(x,y)=xsiny10
二重极限为
lim ⁡ x → 0 y → 0 f ( x , y ) = 0 \lim_{x\to 0 \atop y\to0}f(x,y)=0 y0x0limf(x,y)=0
x ≠ 0 x \not = 0 x=0 时,即在 x 0 = 0 x_0 = 0 x0=0 的去心邻域内 lim ⁡ y → 0 f ( x , y ) \lim\limits_{y\to 0}f(x,y) y0limf(x,y) 不存在,对应的 lim ⁡ x → 0 lim ⁡ y → 0 f ( x , y ) \lim\limits_{x\to 0} \lim\limits_{y\to 0}f(x,y) x0limy0limf(x,y) 也就不存在。
在这里插入图片描述

微分的严格定义

为何要定义微分

如果一个函数 y = f ( x ) y = f(x) y=f(x) 可微,即满足下面等式
Δ y = A Δ x + o ( x ) \Delta y = A\Delta x + o(x) Δy=AΔx+o(x)
则该函数可导,且满足
Δ y = f ′ ( x ) Δ x + o ( x ) \Delta y = f'(x)\Delta x + o(x) Δy=f(x)Δx+o(x)
一般来说 Δ x → Δ y \Delta x \to \Delta y ΔxΔy 是非线性映射,不便于研究函数性质,所以我们需要定义一个线性映射。

开始定义

线性映射的定义
l : R → R 满 足    l ( a + b ) = l ( a ) + l ( b ) ,    l ( k a ) = k l ( a ) l:\R \to \R\\ 满足\ \ l(a+b) = l(a)+l(b),\ \ l(ka) = kl(a)\\ l:RR  l(a+b)=l(a)+l(b),  l(ka)=kl(a)

设 λ = l ( 1 ) l ( h ) = h l ( 1 ) = λ h 设\lambda = l(1)\\ l(h) = hl(1) = \lambda h λ=l(1)l(h)=hl(1)=λh


定义恒同映射
I d : x → x Id:x \to x Id:xx


对与 y = f ( x ) y = f(x) y=f(x) ,定义微分为线性映射
d f x : h → f ′ ( x ) h \mathrm{d}f_x :h\to f'(x)h dfx:hf(x)h
所以
d f x ( h ) = f ′ ( x ) h = f ′ ( x ) I d ( h ) 为 了 把 h 省 略 掉 , 记   d f x = f ′ ( x ) I d , 表 示 这 两 个 映 射 其 实 是 相 同 的 \mathrm{d}f_x(h) = f'(x)h = f'(x)Id(h)\\ 为了把 h省略掉,记\ \mathrm{d}f_x = f'(x)Id, 表示这两个映射其实是相同的 dfx(h)=f(x)h=f(x)Id(h)h dfx=f(x)Id,

对于一个函数,我们可以认为存在多个映射,一个是自变量到因变量的映射,其余的映射是自变量到自变量的恒等映射。

x , y x, y x,y 两个函数
x = I d ( x ) ,   y = f ( x ) x = Id(x), \ y= f(x) x=Id(x), y=f(x)

d y = d f x = f ′ ( x ) I d d x = d I d x = 1 ⋅ I d = I d \mathrm{d}y = \mathrm{d}f_x = f'(x)Id\\ \mathrm{d}x = \mathrm{d}Id_x = 1 \cdot Id = Id dy=dfx=f(x)Iddx=dIdx=1Id=Id
所以 d y = f ′ ( x ) d x \mathrm{d}y = f'(x) \mathrm{d}x dy=f(x)dx
同时我们可以定义该映射的除法
d y d x ( h ) = d y ( h ) d x ( h ) = f ′ ( x ) d x ( h ) d x ( h ) = f ′ ( x ) \frac{\mathrm{d}y}{\mathrm{d}x}(h) = \frac{\mathrm{d}y(h)}{\mathrm{d}x(h)} = \frac{f'(x)\mathrm{d}x(h)}{\mathrm{d}x(h)} = f'(x) dxdy(h)=dx(h)dy(h)=dx(h)f(x)dx(h)=f(x)


另一种定义:初等微积分中的微分是把一个一元函数对应到一个二元函数的映射
d : f ( x ) → f ′ ( x ) h \mathrm{d}:f(x) \to f'(x)h d:f(x)f(x)h

自变量的微分是指对 I d ( x ) Id(x) Id(x) 的微分
d : I d ( x ) → h d I ( x ) = h \mathrm{d}: Id(x) \to h\\ \mathrm{d}I(x) = h d:Id(x)hdI(x)=h
为了简便用 x x x 表示 I d ( x ) Id(x) Id(x)

所以有 d x = h \mathrm{d}x = h dx=h

从而有 d f ( x ) = f ′ ( x ) h = f ′ ( x ) d x \mathrm{d}f(x) = f'(x)h = f'(x)\mathrm{d}x df(x)=f(x)h=f(x)dx


隐函数求导

题目
F ( x + y + z , x 2 + y 2 + z 2 ) = 0 F(x+y+z,x^2+y^2+z^2) = 0 F(x+y+z,x2+y2+z2)=0,求 ∂ z ∂ x \frac{\partial z}{\partial x} xz ∂ z ∂ x \frac{\partial z}{\partial x} xz

我对 F ( x + y + z , x 2 + y 2 + z 2 ) = 0 F(x+y+z,x^2+y^2+z^2) = 0 F(x+y+z,x2+y2+z2)=0 两边对 x x x 求导的结果感到疑惑: F 1 ′ ( 1 + ∂ z ∂ x ) + F 2 ′ ( 2 x + 2 z ∂ z ∂ x ) = 0 F'_1(1+\frac{\partial z}{\partial x})+F'_2(2x+2z \frac{\partial z}{\partial x}) = 0 F1(1+xz)+F2(2x+2zxz)=0 为什么结果不是 F 1 ′ ( 1 +̸ ̸ ∂ z ∂ x ) + F 2 ′ ( 2 x +̸ 2̸ z̸ ̸ ∂ z ∂ x ) = 0 F'_1(1 \not + \not {\frac{\partial z}{\partial x}})+F'_2(2x \not + \not 2\not z \not \frac{\partial z}{\partial x}) = 0 F1(1+xz)+F2(2x+2zxz)=0

原因如下:

  • 我没有意料到题目的暗示,题目暗示这个方程确立了隐函数是 z = z ( x , y ) z = z(x,y) z=z(x,y),那么我们把这个带入方程得到 F ( x + y + z ( x , y ) , x 2 + y 2 + z 2 ( x , y ) ) ≡ 0 F(x+y+z(x,y),x^2+y^2+z^2(x,y)) \equiv 0 F(x+y+z(x,y),x2+y2+z2(x,y))0注意,正是由于恒等 ≡ \equiv 才表示两侧是同一个函数,因此可以同时对两边求偏导。(求偏导的过程其实是两层的复合求导 F F F 中 嵌套 u ( x , y ) = x + y + z ( x , y ) u(x,y) = x+y+z(x,y) u(x,y)=x+y+z(x,y) v ( x , y ) = x 2 + y 2 + z 2 ( x , y ) v(x,y) = x^2+y^2+z^2(x,y) v(x,y)=x2+y2+z2(x,y) u u u v v v 中又都嵌套了 z = z ( x , y ) z= z (x,y) z=z(x,y)
  • 为什么我会得到那个错误的结果?因为我是把 F ( x + y + z , x 2 + y 2 + z 2 ) F(x+y+z,x^2+y^2+z^2) F(x+y+z,x2+y2+z2) 看成是三元函数 G ( x , y , z ) G(x,y,z) G(x,y,z),此时把 x , y , z x,y,z x,y,z 都看成是独立的自变量,而题目中的 z z z 是中间变量。同时而 ∂ G ∂ x = F 1 ′ + 2 x F 2 ′ ≡ 0 \frac{\partial G}{\partial x} = F'_1+2xF'_2 \equiv 0 xG=F1+2xF20 不一定成立。

那么把 z z z 看成自变量和中间变量对求偏导有什么影响呢?我们直接以这个例子来说明一下。如果把 z z z 看成是自变量,那么
∂ G ∂ x = lim ⁡ Δ x → 0 G ( x 0 + Δ x , y 0 , z 0 ) − G ( x 0 , y 0 , z 0 ) Δ x \frac{\partial G}{\partial x} = \lim\limits_{\Delta x \to 0}\frac{G(x_0+\Delta x,y_0,z_0)-G(x_0,y_0,z_0)}{\Delta x} xG=Δx0limΔxG(x0+Δx,y0,z0)G(x0,y0,z0)

此时无论 x x x取何值, x 0 x_0 x0 还是 x 0 + Δ x x_0+\Delta x x0+Δx,z 的取值都不会受影响,始终为 z 0 z_0 z0

如果把 z z z 看成是中间变量 z = z ( x , y ) z= z(x,y) z=z(x,y),那么有
∂ G ∂ x = lim ⁡ Δ x → 0 G ( x 0 + Δ x , y 0 , z ( x 0 + Δ x , y 0 ) ) − G ( x 0 , y 0 , z ( x 0 , y 0 ) ) Δ x \frac{\partial G}{\partial x} = \lim\limits_{\Delta x \to 0}\frac{G(x_0+\Delta x,y_0,z(x_0+\Delta x,y_0))-G(x_0,y_0,z(x_0,y_0))}{\Delta x} xG=Δx0limΔxG(x0+Δx,y0,z(x0+Δx,y0))G(x0,y0,z(x0,y0))
可以看到, x x x 变化会影响 z z z 的取值。

用今天刚认识到的一种角度来解释:对于 G ( x , y , z ) G(x,y,z) G(x,y,z) 来说,定义域是随意的, ∂ G ∂ x \frac{\partial G}{\partial x} xG 是特殊的全导数,得到的是沿 x x x 轴方向的函数(对于二元函数来说,图像上是一条曲线)的线性近似系数;对于 G ( x , y , z ( x , y ) ) G(x,y,z(x,y)) G(x,y,z(x,y)) 来说,定义域缩小了,自由度减少了(当 x x x y y y 确定了之后 z z z 也随之确定), ∂ G ∂ x \frac{\partial G}{\partial x} xG 不再是偏导数。


从一道求切线的题想到的


{ x 2 + y 2 + z 2 = 4 a 2 ( x − a ) 2 + y 2 = a 2 \left\{ \begin{aligned} x^2+y^2+z^2 = 4a^2\\ (x-a)^2+y^2 = a^2 \end{aligned} \right. {x2+y2+z2=4a2(xa)2+y2=a2
在点 ( a , a , 2 a ) (a,a,\sqrt2a) (a,a,2 a) 处的切线方程与法平面方程。

书中提供求切线方程的方法是基于参数方程的。
r ⃗ ( t ) = r ⃗ ( t 0 ) + r ⃗   ′ ( t 0 ) λ ,   λ ∈ R \vec r(t) = \vec r(t_0) + \vec r\ '(t_0)\lambda,\ \lambda \in \R r (t)=r (t0)+r  (t0)λ, λR
写成标准形式为
x − x ( t 0 ) x ′ ( t 0 ) = y − y ( t 0 ) y ′ ( t 0 ) = z − z ( t 0 ) z ′ ( t 0 ) \frac{x-x(t_0)}{x'(t_0)} = \frac{y-y(t_0)}{y'(t_0)} = \frac{z-z(t_0)}{z'(t_0)} x(t0)xx(t0)=y(t0)yy(t0)=z(t0)zz(t0)

对于这么一个方程组,从图像上看是球面和柱面的交线,但这对求解数值没有什么用。关键是要把方程组表示的曲线转换成参数方程。或者更直白地说我们需要得到每个自变量关于某个变量的导数。

方法是方程组两边对 x x x 求导,解出 y x ′ y'_x yx z x ′ z'_x zx,而 x x ′ = 1 x'_x = 1 xx=1。其实就是把 参数 t t t x x x 的映射看成是恒等映射 x = t x = t x=t。所以我们可以从一个新角度看待一个函数:每个函数都可以看成关于 某个自变量 的参数方程组。(只是一种理解,没证明存在性。)


多元函数极值问题

寻找极值的思想其实就是先扩大范围,找出可能的极值点,再一一检验。

无条件极值

先找驻点。然后根据二阶微分是否正定、负定或不定来检验是否为极值点。

寻找最值点

找出驻点和边界点,进行比较。

有条件极值

求有条件极值使用拉格朗日乘数法。拉格朗日乘数法是一种扩大搜寻范围的方法,把搜索的范围从充要条件扩大到必要条件。也正因如此得到的答案需要用原条件来检验。

假设求一个多元函数 f ( x ) ( G ⊂ R n ) f(x)( G \subset \R^n) f(x)(GRn) 极值,在约束条件 ϕ k ( x ) = 0 ( k = 1 , 2 , ⋯   , m , m < n ) \phi_k(x) = 0(k = 1,2,\cdots,m, m<n) ϕk(x)=0(k=1,2,,m,m<n)

步骤:

  1. L ( x , λ 1 , ⋯   , λ m ) = f ( x 0 ) + ∑ k = 1 m λ k ϕ k ( x ) L(x, \lambda_1,\cdots,\lambda_m) = f(x_0) + \sum_{k=1}^m\lambda_k\phi_k(x) L(x,λ1,,λm)=f(x0)+k=1mλkϕk(x),把问题转化为了求 L L L 的无条件极值,不过解出的答案范围扩大了,所以最后需要判定或者检验;
  2. 求解 L L L 驻点,即解 L x ′ = 0 , L λ ′ = 0 L'_x = 0, L'_\lambda = 0 Lx=0,Lλ=0 方程组;
  3. ∂ ( ϕ 1 , ⋯   , ϕ m ) ∂ ( x 1 , ⋯   , x n ) \frac{\partial (\phi_1,\cdots,\phi_m)}{\partial(x_1,\cdots,x_n)} (x1,,xn)(ϕ1,,ϕm) 行满秩,即秩为 m m m,那么存在拉格朗日乘数 λ 1 0 ,   ⋯   , λ m 0 \lambda^0_1,\ \cdots,\lambda_m^0 λ10, ,λm0 使 ( x 0 ,   λ 1 0 ,   ⋯   ,   λ m 0 ) (x_0,\ \lambda_1^0,\ \cdots,\ \lambda_m^0) (x0, λ10, , λm0) L L L 的驻点(假设 x 0 x^0 x0 是具有约束条件的函数 f f f 的条件极值点);
  4. E T = { d x   ∣   d ϕ k ( x ) = 0 ,   k = 1 ,   ⋯   ,   m } E_T = \{\mathrm{d}x \ |\ \mathrm{d}\phi_k(x) = 0,\ k = 1,\ \cdots,\ m\} ET={dx  dϕk(x)=0, k=1, , m}。在 d x ∈ E T \mathrm{d}x \in E_T dxET 的前提下判断 d x x 2 L \mathrm{d}^2_{xx}L dxx2L(把一系列 λ \lambda λ 看成常量)关于 d x i \mathrm{d}x_i dxi 的二次型 正负定与否。正定则得到 f f f 的严格条件极小点,负定则得到 f f f 的严格条件极大点,不定则得到 f f f 的条件极值点(极大或极小,严格或不严格需要通过其他方法进行判断,比如从极值的定义入手)。

注意,以上 x = ( x 1 ,   ⋯   ,   x n ) x = (x_1,\ \cdots,\ x_n) x=(x1, , xn) d x = ( d x 1 ,   ⋯   ,   d x n ) \mathrm{d}x = (\mathrm{d}x_1,\ \cdots,\ \mathrm{d}x_n) dx=(dx1, , dxn)


级数

1 ∏ i = 0 k ( n + i ) = ( n + k ) − n k ∏ i = 0 k ( n + i ) = 1 k ∏ i = 0 k − 1 ( n + i ) − 1 k ∏ i = 1 k ( n + i ) \frac{1}{\prod_{i=0}^k(n+i)} = \frac{(n+k)-n}{k\prod_{i=0}^k(n+i)} = \frac{1}{k\prod_{i=0}^{k-1}(n+i)} - \frac{1}{k\prod_{i=1}^{k}(n+i)} i=0k(n+i)1=ki=0k(n+i)(n+k)n=ki=0k1(n+i)1ki=1k(n+i)1
b n = 1 k ∏ i = 0 k − 1 ( n + i ) b_n = \frac{1}{k\prod_{i=0}^{k-1}(n+i)} bn=ki=0k1(n+i)1 lim ⁡ n → ∞ b n = 0 \lim\limits_{n\to \infty}b_n = 0 nlimbn=0

所以
∑ n = 1 ∞ 1 ∏ i = 0 k ( n + i ) = ∑ n = 1 ∞ ( b n − b n + 1 ) = lim ⁡ n → ∞ ( b 1 − b n + 1 ) = 1 k ! \sum_{n=1}^\infty \frac{1}{\prod_{i=0}^k(n+i)} = \sum_{n=1}^\infty(b_n-b_{n+1}) = \lim_{n \to \infty}(b_1 - b_{n+1}) = \frac{1}{k!} n=1i=0k(n+i)1=n=1(bnbn+1)=nlim(b1bn+1)=k!1

实例:求 ∑ n = 1 ∞ 1 n ( n + 1 ) ( n + 2 ) ( n + 3 ) \sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)(n+3)} n=1n(n+1)(n+2)(n+3)1


比较法推论证明
lim ⁡ n → ∞ a n b n = λ ,   λ ≥ 0 a n b n = λ + α n ,   α n → 0 ,   n → 0 a n = ( λ + α n ) b n C 1 b n ≤ a n ≤ C 2 b n ,   C ≥ 0 \begin{aligned} \lim_{n \to \infty}\frac{a_n}{b_n} &= \lambda,\ \lambda \ge 0\\\\ \frac{a_n}{b_n} &= \lambda + \alpha_n,\ \alpha_n \to 0,\ n \to 0\\\\ a_n &= (\lambda + \alpha_n) b_n\\\\ C_1b_n \le a_n \le C_2b_n,\ C \ge 0 \end{aligned} nlimbnanbnananC1bnanC2bn, C0=λ, λ0=λ+αn, αn0, n0=(λ+αn)bn
所以 a n , b n a_n,b_n an,bn 敛散性相同

同时还有一个有用的推论可以用在黎曼定理
t + o ( t ) ≤ t + c t = C t t + o(t) \le t + ct = Ct t+o(t)t+ct=Ct
即高阶无穷小会恒小于它的低阶无穷小乘上一个常数。


收敛与一致收敛的区别在于:前者是一个 x x x 对应一个边界 N ε N_\varepsilon Nε,后者是区间内所有的 x x x 都使用相同的标准 N ε N_\varepsilon Nε。(一致连续也是同样的道理)


判断函数项级数的收敛域和绝对收敛域:

  1. x x x 看成常数,然后判断绝对收敛域(对原来的项取绝对值);
  2. 在绝对收敛域之外的区间中区分收敛域和发散域。

u n ( x ) u_n(x) un(x) [ a , b ] [a,b] [a,b] 上连续, ∑ n = 1 ∞ u n ( x ) \sum_{n = 1}^\infty u_n(x) n=1un(x) [ a , b ] [a,b] [a,b] 上一致收敛(1,2的大前提),那么有如下结论:
3. 和函数 S ( x ) S(x) S(x) [ a , b ] [a,b] [a,b] 连续;
4. 和函数的积分可逐项积分, ∫ a x S ( t ) d t = ∑ n = 1 ∞ ∫ a x u ( t ) d t \int_a^x S(t)\mathrm{d}t = \sum_{n = 1}^\infty \int_a^xu(t)\mathrm{d}t axS(t)dt=n=1axu(t)dt,且级数 ∑ n = 1 ∞ ∫ a x u ( t ) d t \sum_{n = 1}^\infty \int_a^xu(t)\mathrm{d}t n=1axu(t)dt [ a , b ] [a,b] [a,b] 上一致收敛;
5. u n ( x ) u_n(x) un(x) [ a , b ] [a,b] [a,b] 上有连续的导数 u n ′ ( x ) u'_n(x) un(x),级数 ∑ n = 1 ∞ u ′ ( x ) \sum_{n = 1}^\infty u'(x) n=1u(x) [ a , b ] [a,b] [a,b] 上一直收敛, ∑ n = 1 ∞ u n ( x ) \sum_{n = 1}^\infty u_n(x) n=1un(x) 至少在一点 x 0 ∈ [ a , b ] x_0\in [a,b] x0[a,b] 收敛,那么 ∑ n = 1 ∞ u n ( x ) \sum_{n = 1}^\infty u_n(x) n=1un(x) [ a , b ] [a,b] [a,b] 上一致收敛,且可逐项微分,即 S ‘ ( x ) = ∑ n = 1 ∞ u n ′ ( x ) S‘(x) = \sum_{n = 1}^\infty u'_n(x) S(x)=n=1un(x)

用在解题时,如果 u n ( x ) u_n(x) un(x) 的级数不好求,那么看看 ∫ a x u n ( x ) \int_a^x u_n(x) axun(x) u ′ ( x ) u'(x) u(x) 的级数好不好求。(至于逐项积分的下限怎么确定还有点懵,幂级数的逐项积分的下限看起来都是0)(若 [ c , d ] ∈ [ a , b ] [c,d]\in[a,b] [c,d][a,b],级数 ∑ n = 1 ∞ u n ( x ) \sum_{n = 1}^\infty u_n(x) n=1un(x) 同样满足逐项积分)(积分下限通常选择收敛域中点,因为该点的收敛值一般是已知的且为0)
∑ n = 1 ∞ G n ( x ) = ∑ n = 1 ∞ ∫ a x g n ( t ) d t = ∫ a x ∑ n = 1 ∞ g n ( t ) d t = ∫ a x S g ( t ) d t \begin{aligned} \sum_{n = 1}^\infty G_n(x) &= \sum_{n = 1}^\infty \int_a^xg_n(t)\mathrm{d}t\\ &= \int_a^x\sum_{n = 1}^\infty g_n(t)\mathrm{d}t\\ &= \int_a^x S_g(t)\mathrm{d}t \end{aligned} n=1Gn(x)=n=1axgn(t)dt=axn=1gn(t)dt=axSg(t)dt


多重积分计算

多重积分的变量代换其实可以看成一维定积分第二类积分换元法的多维推广。

要求的条件:

  1. 新元和旧元要满射;
  2. 旧元对新远的雅可比行列式在新元区域内处处不为零,或只是在新元区域内个别点或曲线上等于零,而在其他点上不等于零。

对于换元积分,有一个需要理清:新的积分区域怎么确定?

  1. 根据原区域列出旧元的不等式组;
  2. 旧元用新元带入,化简新元的不等式组,其约束的区域即为新区域。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值