第五章 定积分

本节讨论积分学的另一个基本问题——定积分问题。——高等数学同济版

目录

习题5-1 定积分的概念与性质

  本节主要介绍了一些定积分的应用和性质。(其中矩阵法、抛物线法在考纲中没有明确提出考察)

11.设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上连续,证明 ∫ 0 1 f 2 ( x ) d x ⩾ ( ∫ 0 1 f ( x ) d x ) 2 . \displaystyle\int^1_0f^2(x)\mathrm{d}x\geqslant\left(\displaystyle\int^1_0f(x)\mathrm{d}x\right)^2. 01f2(x)dx(01f(x)dx)2.

  记 a = ∫ 0 1 f ( x ) d x a=\displaystyle\int^1_0f(x)\mathrm{d}x a=01f(x)dx,则由定积分性质,得
∫ 0 1 [ f ( x ) − a ] 2 d x ⩾ 0. \displaystyle\int^1_0[f(x)-a]^2\mathrm{d}x\geqslant0. 01[f(x)a]2dx0.
  即
∫ 0 1 [ f ( x ) − a ] 2 d x = ∫ 0 1 f 2 ( x ) d x − 2 a ∫ 0 1 f ( x ) d x + a 2 = ∫ 0 1 f 2 ( x ) d x − [ ∫ 0 1 f ( x ) d x ] 2 ⩾ 0. \begin{aligned} \displaystyle\int^1_0[f(x)-a]^2\mathrm{d}x&=\displaystyle\int^1_0f^2(x)\mathrm{d}x-2a\displaystyle\int^1_0f(x)\mathrm{d}x+a^2\\ &=\displaystyle\int^1_0f^2(x)\mathrm{d}x-\left[\displaystyle\int^1_0f(x)\mathrm{d}x\right]^2\geqslant0. \end{aligned} 01[f(x)a]2dx=01f2(x)dx2a01f(x)dx+a2=01f2(x)dx[01f(x)dx]20.
  由此结论成立。(这道题通过构造不等式证明

习题5-2 微积分基本公式

  本节主要介绍了微积分基本公式。

16.设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)内连续,且 lim ⁡ x → + ∞ f ( x ) = 1 \lim\limits_{x\to+\infty}f(x)=1 x+limf(x)=1,证明函数 y = e − x ∫ 0 x e t f ( t ) d t y=e^{-x}\displaystyle\int^x_0e^tf(t)\mathrm{d}t y=ex0xetf(t)dt满足微分方程 d y d x + y = f ( x ) \cfrac{\mathrm{d}y}{\mathrm{d}x}+y=f(x) dxdy+y=f(x),并求 lim ⁡ x → + ∞ y ( x ) \lim\limits_{x\to+\infty}y(x) x+limy(x)


d y d x = e − x ∫ 0 x e t f ( t ) d t + e − x ⋅ e x f ( x ) = − y + f ( x ) . \begin{aligned} \cfrac{\mathrm{d}y}{\mathrm{d}x}&=e^{-x}\displaystyle\int^x_0e^tf(t)\mathrm{d}t+e^{-x}\cdot e^xf(x)\\ &=-y+f(x). \end{aligned} dxdy=ex0xetf(t)dt+exexf(x)=y+f(x).
  因此 y ( x ) y(x) y(x)满足微分方程 d y d x + y = f ( x ) \cfrac{\mathrm{d}y}{\mathrm{d}x}+y=f(x) dxdy+y=f(x)
  由条件 lim ⁡ x → + ∞ f ( x ) = 1 \lim\limits_{x\to+\infty}f(x)=1 x+limf(x)=1,从而存在 X 0 > 0 X_0>0 X0>0,当 x > X 0 x>X_0 x>X0时,有 f ( x ) > 1 2 f(x)>\cfrac{1}{2} f(x)>21
  因此,
∫ 0 x e t f ( t ) d t = ∫ 0 X 0 e t f ( t ) d t + ∫ X 0 x e t f ( t ) d t ⩾ ∫ 0 X 0 e t f ( t ) d t + ∫ X 0 x 1 2 e X 0 d t = ∫ 0 X 0 e t f ( t ) d t + 1 2 e X 0 ( x − X 0 ) . \begin{aligned} \displaystyle\int^x_0e^tf(t)\mathrm{d}t&=\displaystyle\int^{X_0}_0e^tf(t)\mathrm{d}t+\displaystyle\int^x_{X_0}e^tf(t)\mathrm{d}t\\ &\geqslant\displaystyle\int^{X_0}_0e^tf(t)\mathrm{d}t+\displaystyle\int^x_{X_0}\cfrac{1}{2}e^{X_0}\mathrm{d}t\\ &=\displaystyle\int^{X_0}_0e^tf(t)\mathrm{d}t+\cfrac{1}{2}e^{X_0}(x-X_0). \end{aligned} 0xetf(t)dt=0X0etf(t)dt+X0xetf(t)dt0X0etf(t)dt+X0x21eX0dt=0X0etf(t)dt+21eX0(xX0).
  故,当时 x → + ∞ x\to+\infty x+时, ∫ 0 x e t f ( t ) d t → + ∞ \displaystyle\int^x_0e^tf(t)\mathrm{d}t\to+\infty 0xetf(t)dt+,从而利用洛必达法则,有
lim ⁡ x → + ∞ y ( x ) = lim ⁡ x → + ∞ ∫ 0 x e t f ( t ) d t e x = lim ⁡ x → + ∞ e x f ( x ) e x . \lim\limits_{x\to+\infty}y(x)=\lim\limits_{x\to+\infty}\cfrac{\displaystyle\int^x_0e^tf(t)\mathrm{d}t}{e^x}=\lim\limits_{x\to+\infty}\cfrac{e^xf(x)}{e^x}. x+limy(x)=x+limex0xetf(t)dt=x+limexexf(x).
这道题主要利用已知条件假设出某一个值

习题5-3 定积分的换元法和分部积分法

因此,在一定条件下,可以用换元积分法和分部积分法来计算定积分。——高等数学同济版

  本节主要介绍了换元积分法和分部积分法在定积分中的应用。

1.计算下列定积分:

(18) ∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 ; \displaystyle\int^2_0\cfrac{x\mathrm{d}x}{(x^2-2x+2)^2}; 02(x22x+2)2xdx;

  令 x = 1 + tan ⁡ u x=1+\tan u x=1+tanu,则 d x = sec ⁡ 2 u d u \mathrm{d}x=\sec^2u\mathrm{d}u dx=sec2udu,因此
∫ 0 2 x d x ( x 2 − 2 x + 2 ) 2 = ∫ 0 2 x d x [ ( x − 1 ) 2 + 1 ] 2 = ∫ − π 4 π 4 ( 1 + tan ⁡ u ) d u sec ⁡ 2 u = 2 ∫ 0 π 4 cos ⁡ 2 u d u = ∫ 0 π 4 ( 1 + cos ⁡ 2 u ) d u = π 4 + 1 2 . \begin{aligned} \displaystyle\int^2_0\cfrac{x\mathrm{d}x}{(x^2-2x+2)^2}&=\displaystyle\int^2_0\cfrac{x\mathrm{d}x}{[(x-1)^2+1]^2}=\displaystyle\int^{\frac{\pi}{4}}_{-\frac{\pi}{4}}\cfrac{(1+\tan u)\mathrm{d}u}{\sec^2u}\\ &=2\displaystyle\int^{\frac{\pi}{4}}_{0}\cos^2u\mathrm{d}u=\displaystyle\int^{\frac{\pi}{4}}_{0}(1+\cos2u)\mathrm{d}u\\ &=\cfrac{\pi}{4}+\cfrac{1}{2}. \end{aligned} 02(x22x+2)2xdx=02[(x1)2+1]2xdx=4π4πsec2u(1+tanu)du=204πcos2udu=04π(1+cos2u)du=4π+21.
这道题利用被积函数为奇函数且积分区间对称结果为0的结论求解

(22) ∫ − 5 5 x 3 sin ⁡ 2 x x 4 + 2 x 2 + 1 d x . \displaystyle\int^5_{-5}\cfrac{x^3\sin^2x}{x^4+2x^2+1}\mathrm{d}x. 55x4+2x2+1x3sin2xdx.

  由于被积函数为奇函数,因此
∫ − 5 5 x 3 sin ⁡ 2 x x 4 + 2 x 2 + 1 d x = 0. \displaystyle\int^5_{-5}\cfrac{x^3\sin^2x}{x^4+2x^2+1}\mathrm{d}x=0. 55x4+2x2+1x3sin2xdx=0.
这道题利用被积函数为奇函数且积分区间对称结果为0的结论求解

7.计算下列定积分:

(12) ∫ 0 1 ( 1 − x 2 ) m 2 d x ; \displaystyle\int^1_0(1-x^2)^{\frac{m}{2}}\mathrm{d}x; 01(1x2)2mdx;


∫ 0 1 ( 1 − x 2 ) m 2 d x = x = sin ⁡ u ∫ 0 π 2 cos ⁡ m + 1 u d u = { m m + 1 ⋅ m − 2 m − 1 ⋅ ⋯ ⋅ 1 2 ⋅ π 2 , m 为奇数, m m + 1 ⋅ m − 2 m − 1 ⋅ ⋯ ⋅ 2 3 , m 为偶数, = { 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ m 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ ( m + 1 ) ⋅ π 2 , m 为奇数, 2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ m 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ ( m + 1 ) , m 为偶数, \begin{aligned} \displaystyle\int^1_0(1-x^2)^{\frac{m}{2}}\mathrm{d}x&\xlongequal{x=\sin u}\displaystyle\int^{\frac{\pi}{2}}_0\cos^{m+1}u\mathrm{d}u\\ &=\begin{cases} \cfrac{m}{m+1}\cdot\cfrac{m-2}{m-1}\cdot\cdots\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2},&\qquad m\text{为奇数,}\\ \cfrac{m}{m+1}\cdot\cfrac{m-2}{m-1}\cdot\cdots\cdot\cfrac{2}{3},&\qquad m\text{为偶数,} \end{cases}\\ &=\begin{cases} \cfrac{1\cdot3\cdot5\cdot\cdots\cdot m}{2\cdot4\cdot6\cdot\cdots\cdot(m+1)}\cdot\cfrac{\pi}{2},&\qquad m\text{为奇数,}\\ \cfrac{2\cdot4\cdot6\cdot\cdots\cdot m}{1\cdot3\cdot5\cdot\cdots\cdot(m+1)},&\qquad m\text{为偶数,} \end{cases} \end{aligned} 01(1x2)2mdxx=sinu 02πcosm+1udu=m+1mm1m2212π,m+1mm1m232,m为奇数,m为偶数,=246(m+1)135m2π,135(m+1)246m,m为奇数,m为偶数,
这道题主要利用积分表以及换元法求解

习题5-4 反常积分

在一些实际问题中,常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分。它们已经不属于前面所说的定积分了。因此,我们对定积分作出如下两种推广,从而形成反常积分的概念。——高等数学同济版

  本节主要介绍了反常积分的概念和反常积分是否收敛的定义。

习题5-5 反常积分的审敛法  Γ \Gamma Γ函数

反常积分的收敛性,可以通过求被积函数的原函数,然后按定义取极限,根据极限的存在与否来判定。本节中我们建立不通过被积函数的原函数判定反常积分的收敛性的判定法。——高等数学同济版

  本节主要介绍了反常积分的审敛法和 Γ \Gamma Γ函数。(这一节在考纲中未明确提出,但是在某一年考研数学中涉及到审敛法)

1.判定下列反常积分的收敛性:

(7) ∫ 0 1 x 4 d x 1 − x 4 ; \displaystyle\int^1_0\cfrac{x^4\mathrm{d}x}{\sqrt{1-x^4}}; 011x4 x4dx;

   x = 1 x=1 x=1是被积函数的瑕点。由于 lim ⁡ x → 1 − ( 1 − x ) 1 2 ⋅ x 4 1 − x 4 = 1 2 \lim\limits_{x\to1^-}(1-x)^{\frac{1}{2}}\cdot\cfrac{x^4}{\sqrt{1-x^4}}=\cfrac{1}{2} x1lim(1x)211x4 x4=21,因此 ∫ 0 1 x 4 d x 1 − x 4 \displaystyle\int^1_0\cfrac{x^4\mathrm{d}x}{\sqrt{1-x^4}} 011x4 x4dx收敛。(这道题主要利用构造公式来判断收敛性。)

2.设反常积分 ∫ 1 + ∞ f 2 ( x ) d x \displaystyle\int^{+\infty}_1f^2(x)\mathrm{d}x 1+f2(x)dx收敛,证明反常积分 ∫ 1 + ∞ f ( x ) x d x \displaystyle\int^{+\infty}_1\cfrac{f(x)}{x}\mathrm{d}x 1+xf(x)dx绝对收敛。

  因为 ∣ f ( x ) x ∣ ⩽ f 2 ( x ) + 1 x 2 2 \left|\cfrac{f(x)}{x}\right|\leqslant\cfrac{f^2(x)+\cfrac{1}{x^2}}{2} xf(x)2f2(x)+x21,由于 ∫ 1 + ∞ f 2 ( x ) d x \displaystyle\int^{+\infty}_1f^2(x)\mathrm{d}x 1+f2(x)dx收敛, ∫ 1 + ∞ 1 x 2 d x \displaystyle\int^{+\infty}_1\cfrac{1}{x^2}\mathrm{d}x 1+x21dx也收敛,因此 ∫ 1 + ∞ ∣ f ( x ) x ∣ d x \displaystyle\int^{+\infty}_1\left|\cfrac{f(x)}{x}\right|\mathrm{d}x 1+xf(x)dx收敛,即 ∫ 1 + ∞ f ( x ) x d x \displaystyle\int^{+\infty}_1\cfrac{f(x)}{x}\mathrm{d}x 1+xf(x)dx绝对收敛。(利用基本不等式进行放缩求解

3.用函数表示下列积分,并指出这些积分的收敛范围:

(2) ∫ 0 1 ( ln ⁡ 1 x ) p d x ; \displaystyle\int^1_0\left(\ln\cfrac{1}{x}\right)^p\mathrm{d}x; 01(lnx1)pdx;

  令 u = ln ⁡ 1 x u=\ln\cfrac{1}{x} u=lnx1,即 x = e − u x=e^{-u} x=eu
∫ 0 1 ( ln ⁡ 1 x ) p d x = ∫ + ∞ 0 − u p e − u d u = Γ ( p + 1 ) . \displaystyle\int^1_0\left(\ln\cfrac{1}{x}\right)^p\mathrm{d}x=\displaystyle\int^0_{+\infty}-u^pe^{-u}\mathrm{d}u=\Gamma(p+1). 01(lnx1)pdx=+0upeudu=Γ(p+1).
  当 p > − 1 p>-1 p>1时收敛。(这道题主要利用换元求解

总习题五

1.填空:

(5)设函数 f ( x ) f(x) f(x)连续,则 d d x ∫ 0 x t f ( t 2 − x 2 ) d t = \cfrac{\mathrm{d}}{\mathrm{d}x}\displaystyle\int^x_0tf(t^2-x^2)\mathrm{d}t= dxd0xtf(t2x2)dt=__________。

   x f ( − x 2 ) xf(-x^2) xf(x2)。作换元 u = t 2 − x 2 u=t^2-x^2 u=t2x2,则
∫ 0 x t f ( t 2 − x 2 ) d t = 1 2 ∫ 0 x f ( t 2 − x 2 ) d ( t 2 − x 2 ) = 1 2 ∫ − x 2 0 f ( u ) d u = − 1 2 ∫ 0 − x 2 f ( u ) d u . \begin{aligned} \displaystyle\int^x_0tf(t^2-x^2)\mathrm{d}t&=\cfrac{1}{2}\displaystyle\int^x_0f(t^2-x^2)\mathrm{d}(t^2-x^2)=\cfrac{1}{2}\displaystyle\int^0_{-x^2}f(u)\mathrm{d}u\\ &=-\cfrac{1}{2}\displaystyle\int^{-x^2}_0f(u)\mathrm{d}u. \end{aligned} 0xtf(t2x2)dt=210xf(t2x2)d(t2x2)=21x20f(u)du=210x2f(u)du.
  因此
d d x ∫ 0 x t f ( t 2 − x 2 ) d t = − 1 2 f ( − x 2 ) ⋅ ( − 2 x ) = x f ( − x 2 ) . \cfrac{\mathrm{d}}{\mathrm{d}x}\displaystyle\int^x_0tf(t^2-x^2)\mathrm{d}t=-\cfrac{1}{2}f(-x^2)\cdot(-2x)=xf(-x^2). dxd0xtf(t2x2)dt=21f(x2)(2x)=xf(x2).
这道题主要通过构造出标准的积分形式求解

4.利用定积分的定义计算下列极限:

(1) lim ⁡ n → ∞ 1 n ∑ i = 1 n 1 + i n \lim\limits_{n\to\infty}\cfrac{1}{n}\sum\limits_{i=1}^{n}\sqrt{1+\cfrac{i}{n}} nlimn1i=1n1+ni ,其中 f ( x ) f(x) f(x)连续;


lim ⁡ n → ∞ 1 n ∑ i = 1 n 1 + i n = ∫ 0 1 1 + x d x = [ 2 3 ( 1 + x ) 3 2 ] ∣ 0 1 = 2 3 ( 2 2 − 1 ) . \lim\limits_{n\to\infty}\cfrac{1}{n}\sum_{i=1}^{n}\sqrt{1+\cfrac{i}{n}}=\displaystyle\int^1_0\sqrt{1+x}\mathrm{d}x=\left[\cfrac{2}{3}(1+x)^{\frac{3}{2}}\right]\Biggm\vert^1_0=\cfrac{2}{3}(2\sqrt{2}-1). nlimn1i=1n1+ni =011+x dx=[32(1+x)23]01=32(22 1).

(2) lim ⁡ x → ∞ 1 p + 2 p + ⋯ + n p n p + 1 ( p > 0 ) . \lim\limits_{x\to\infty}\cfrac{1^p+2^p+\cdots+n^p}{n^{p+1}}(p>0). xlimnp+11p+2p++np(p>0).


lim ⁡ x → ∞ 1 p + 2 p + ⋯ + n p n p + 1 = lim ⁡ x → ∞ 1 n ∑ i = 1 n ( i n ) p = ∫ 0 1 x p d x = 1 p + 1 . \lim\limits_{x\to\infty}\cfrac{1^p+2^p+\cdots+n^p}{n^{p+1}}=\lim\limits_{x\to\infty}\cfrac{1}{n}\sum^n_{i=1}\left(\cfrac{i}{n}\right)^p=\displaystyle\int^1_0x^p\mathrm{d}x=\cfrac{1}{p+1}. xlimnp+11p+2p++np=xlimn1i=1n(ni)p=01xpdx=p+11.
这道题要求利用定积分的定义求解,需要熟悉定积分的定义

8.设 p > 0 p>0 p>0,证明

p p + 1 < ∫ 0 1 d x 1 + x p < 1. \cfrac{p}{p+1}<\displaystyle\int^1_0\cfrac{\mathrm{d}x}{1+x^p}<1. p+1p<011+xpdx<1.

  由于当 p > 0 , 0 < x < 1 p>0,0<x<1 p>0,0<x<1时, 0 < 1 1 + x p < 1 0<\cfrac{1}{1+x^p}<1 0<1+xp1<1,因此有 ∫ 0 1 d x 1 + x p < 1 \displaystyle\int^1_0\cfrac{\mathrm{d}x}{1+x^p}<1 011+xpdx<1。又
1 − ∫ 0 1 d x 1 + x p = ∫ 0 1 x p d x 1 + x p < ∫ 0 1 x p d x = 1 1 + p . 1-\displaystyle\int^1_0\cfrac{\mathrm{d}x}{1+x^p}=\displaystyle\int^1_0\cfrac{x^p\mathrm{d}x}{1+x^p}<\displaystyle\int^1_0x^p\mathrm{d}x=\cfrac{1}{1+p}. 1011+xpdx=011+xpxpdx<01xpdx=1+p1.
  故有 ∫ 0 1 d x 1 + x p > p p + 1 \displaystyle\int^1_0\cfrac{\mathrm{d}x}{1+x^p}>\cfrac{p}{p+1} 011+xpdx>p+1p,原题得证。
这道题主要通过放缩法和构造函数求解

9.设 f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 [ a , b ] [a,b] [a,b]上均连续,证明:

(1) ( ∫ a b f ( x ) g ( x ) d x ) 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x \left(\displaystyle\int^b_af(x)g(x)\mathrm{d}x\right)^2\leqslant\displaystyle\int^b_af^2(x)\mathrm{d}x\cdot\displaystyle\int^b_ag^2(x)\mathrm{d}x (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx(柯西-施瓦茨不等式);

  对任意实数 λ \lambda λ,有 ∫ a b [ f ( x ) + λ g ( x ) ] 2 d x ⩾ 0 \displaystyle\int^b_a[f(x)+\lambda g(x)]^2\mathrm{d}x\geqslant0 ab[f(x)+λg(x)]2dx0,即
∫ a b f 2 ( x ) d x + 2 λ ∫ a b f ( x ) g ( x ) d x + λ 2 ∫ a b g 2 ( x ) d x ⩾ 0. \displaystyle\int^b_af^2(x)\mathrm{d}x+2\lambda\displaystyle\int^b_af(x)g(x)\mathrm{d}x+\lambda^2\displaystyle\int^b_ag^2(x)\mathrm{d}x\geqslant0. abf2(x)dx+2λabf(x)g(x)dx+λ2abg2(x)dx0.
  上式左边是一个关于 λ \lambda λ的二次三项式,它判定非负的条件是其系数判别式非正,即有
4 ( ∫ a b f ( x ) g ( x ) d x ) 2 − 4 ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x ⩽ 0. 4\left(\displaystyle\int^b_af(x)g(x)\mathrm{d}x\right)^2-4\displaystyle\int^b_af^2(x)\mathrm{d}x\cdot\displaystyle\int^b_ag^2(x)\mathrm{d}x\leqslant0. 4(abf(x)g(x)dx)24abf2(x)dxabg2(x)dx0.
  从而本题得证。(这道题利用基本不等式和判别式法证明

(2) ( ∫ a b [ f ( x ) + g ( x ) ] 2 d x ) 1 2 ⩽ ( ∫ a b f 2 ( x ) d x ) 1 2 + ( ∫ a b g 2 ( x ) d x ) 1 2 \left(\displaystyle\int^b_a[f(x)+g(x)]^2\mathrm{d}x\right)^{\cfrac{1}{2}}\leqslant\left(\displaystyle\int^b_af^2(x)\mathrm{d}x\right)^{\frac{1}{2}}+\left(\displaystyle\int^b_ag^2(x)\mathrm{d}x\right)^{\frac{1}{2}} (ab[f(x)+g(x)]2dx)21(abf2(x)dx)21+(abg2(x)dx)21(闵可夫斯基不等式)。


∫ a b [ f ( x ) + g ( x ) ] 2 d x = ∫ a b [ f 2 ( x ) + 2 f ( x ) g ( x ) + g 2 ( x ) ] d x = ∫ a b f 2 ( x ) d x + 2 ∫ a b f ( x ) g ( x ) d x + ∫ a b g 2 ( x ) d x ⩽ ∫ a b f 2 ( x ) d x + 2 ( ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x ) 1 2 + ∫ a b g 2 ( x ) d x = [ ( ∫ a b f 2 ( x ) d x ) 1 2 + ( ∫ a b g 2 ( x ) d x ) 1 2 ] 2 . \begin{aligned} \displaystyle\int^b_a[f(x)+g(x)]^2\mathrm{d}x&=\displaystyle\int^b_a[f^2(x)+2f(x)g(x)+g^2(x)]\mathrm{d}x\\ &=\displaystyle\int^b_af^2(x)\mathrm{d}x+2\displaystyle\int^b_af(x)g(x)\mathrm{d}x+\displaystyle\int^b_ag^2(x)\mathrm{d}x\\ &\leqslant\displaystyle\int^b_af^2(x)\mathrm{d}x+2\left(\displaystyle\int^b_af^2(x)\mathrm{d}x\cdot\displaystyle\int^b_ag^2(x)\mathrm{d}x\right)^{\frac{1}{2}}+\displaystyle\int^b_ag^2(x)\mathrm{d}x\\ &=\left[\left(\displaystyle\int^b_af^2(x)\mathrm{d}x\right)^{\frac{1}{2}}+\left(\displaystyle\int^b_ag^2(x)\mathrm{d}x\right)^{\frac{1}{2}}\right]^2. \end{aligned} ab[f(x)+g(x)]2dx=ab[f2(x)+2f(x)g(x)+g2(x)]dx=abf2(x)dx+2abf(x)g(x)dx+abg2(x)dxabf2(x)dx+2(abf2(x)dxabg2(x)dx)21+abg2(x)dx=(abf2(x)dx)21+(abg2(x)dx)212.
  从而本题得证。(这道题主要利用上一道题的结论和构造法证明

10.设 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,且 f ( x ) > 0 f(x)>0 f(x)>0。证明 ∫ a b f ( x ) d x ⋅ ∫ a b 1 f ( x ) d x ⩾ ( b − a ) 2 . \displaystyle\int^b_af(x)\mathrm{d}x\cdot\displaystyle\int^b_a\cfrac{1}{f(x)}\mathrm{d}x\geqslant(b-a)^2. abf(x)dxabf(x)1dx(ba)2.

  根据上一道题所证的柯西-施瓦茨不等式,有
( ∫ a b f ( x ) ⋅ 1 f ( x ) d x ) 2 ⩽ ∫ a b ( f ( x ) ) 2 d x ⋅ ∫ a b ( 1 f ( x ) ) 2 d x . \left(\displaystyle\int^b_a\sqrt{f(x)}\cdot\cfrac{1}{\sqrt{f(x)}}\mathrm{d}x\right)^2\leqslant\displaystyle\int^b_a\left(\sqrt{f(x)}\right)^2\mathrm{d}x\cdot\displaystyle\int^b_a\left(\cfrac{1}{\sqrt{f(x)}}\right)^2\mathrm{d}x. (abf(x) f(x) 1dx)2ab(f(x) )2dxab(f(x) 1)2dx.
  即得
∫ a b f ( x ) d x ⋅ ∫ a b 1 f ( x ) d x ⩾ ( b − a ) 2 . \displaystyle\int^b_af(x)\mathrm{d}x\cdot\displaystyle\int^b_a\cfrac{1}{f(x)}\mathrm{d}x\geqslant(b-a)^2. abf(x)dxabf(x)1dx(ba)2.
这道题主要利用上一道题的两个不等式求解

11.计算下列积分:

(1) ∫ 0 π 2 x + sin ⁡ x 1 + cos ⁡ x d x ; \displaystyle\int^{\frac{\pi}{2}}_0\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x; 02π1+cosxx+sinxdx;


∫ 0 π 2 x + sin ⁡ x 1 + cos ⁡ x d x = ∫ 0 π 2 x 1 + cos ⁡ x d x + ∫ 0 π 2 sin ⁡ x 1 + cos ⁡ x d x = ∫ 0 π 2 x 2 sec ⁡ 2 x 2 d x − ∫ 0 π 2 1 1 + cos ⁡ x d ( 1 + cos ⁡ x ) = [ x tan ⁡ x 2 ] ∣ 0 π 2 − ∫ 0 π 2 tan ⁡ x 2 d x − [ ln ⁡ ( 1 + cos ⁡ x ) ] ∣ 0 π 2 = π 2 + [ 2 ln ⁡ cos ⁡ x 2 ] ∣ 0 π 2 + ln ⁡ 2 = π 2 . \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_0\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{x}{1+\cos x}\mathrm{d}x+\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin x}{1+\cos x}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{x}{2}\sec^2\cfrac{x}{2}\mathrm{d}x-\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{1}{1+\cos x}\mathrm{d}(1+\cos x)\\ &=\left[x\tan\cfrac{x}{2}\right]\Biggm\vert^{\frac{\pi}{2}}_0-\displaystyle\int^{\frac{\pi}{2}}_0\tan\cfrac{x}{2}\mathrm{d}x-[\ln(1+\cos x)]\Biggm\vert^{\frac{\pi}{2}}_0\\ &=\cfrac{\pi}{2}+\left[2\ln\cos\cfrac{x}{2}\right]\Biggm\vert^{\frac{\pi}{2}}_0+\ln2=\cfrac{\pi}{2}. \end{aligned} 02π1+cosxx+sinxdx=02π1+cosxxdx+02π1+cosxsinxdx=02π2xsec22xdx02π1+cosx1d(1+cosx)=[xtan2x]02π02πtan2xdx[ln(1+cosx)]02π=2π+[2lncos2x]02π+ln2=2π.
这道题利用了定积分的性质求解,在高等数学同济版总习题四第四题(27)答案中给出了该函数的不定积分的解,方法略有不同,传送门在这里

(2) ∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ x ) d x ; \displaystyle\int^{\frac{\pi}{4}}_0\ln(1+\tan x)\mathrm{d}x; 04πln(1+tanx)dx;


∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ x ) d x = ∫ 0 π 4 ln ⁡ cos ⁡ x + sin ⁡ x cos ⁡ x d x = ∫ 0 π 4 ln ⁡ ( cos ⁡ x + sin ⁡ x ) d x − ∫ 0 π 4 ln ⁡ ( cos ⁡ x ) d x . \begin{aligned} \displaystyle\int^{\frac{\pi}{4}}_0\ln(1+\tan x)\mathrm{d}x&=\displaystyle\int^{\frac{\pi}{4}}_0\ln\cfrac{\cos x+\sin x}{\cos x}\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\ln(\cos x+\sin x)\mathrm{d}x-\displaystyle\int^{\frac{\pi}{4}}_0\ln(\cos x)\mathrm{d}x. \end{aligned} 04πln(1+tanx)dx=04πlncosxcosx+sinxdx=04πln(cosx+sinx)dx04πln(cosx)dx.
  而
∫ 0 π 4 ln ⁡ ( cos ⁡ x + sin ⁡ x ) d x = ∫ 0 π 4 ln ⁡ [ 2 cos ⁡ ( π 4 − x ) ] d x = x = π 4 − u − ∫ π 4 0 ( ln ⁡ 2 + ln ⁡ cos ⁡ u ) d u = π ln ⁡ 2 8 + ∫ 0 π 4 ln ⁡ ( cos ⁡ x ) d x . \begin{aligned} \displaystyle\int^{\frac{\pi}{4}}_0\ln(\cos x+\sin x)\mathrm{d}x&=\displaystyle\int^{\frac{\pi}{4}}_0\ln\left[\sqrt{2}\cos\left(\cfrac{\pi}{4}-x\right)\right]\mathrm{d}x\\ \xlongequal{x=\cfrac{\pi}{4}-u}-\displaystyle\int^0_{\frac{\pi}{4}}(\ln\sqrt{2}+\ln\cos u)\mathrm{d}u\\ &=\cfrac{\pi\ln2}{8}+\displaystyle\int^{\frac{\pi}{4}}_0\ln(\cos x)\mathrm{d}x. \end{aligned} 04πln(cosx+sinx)dxx=4πu 4π0(ln2 +lncosu)du=04πln[2 cos(4πx)]dx=8πln2+04πln(cosx)dx.
  故
∫ 0 π 4 ln ⁡ ( 1 + tan ⁡ x ) d x = π ln ⁡ 2 8 . \displaystyle\int^{\frac{\pi}{4}}_0\ln(1+\tan x)\mathrm{d}x=\cfrac{\pi\ln2}{8}. 04πln(1+tanx)dx=8πln2.
这道题主要利用构造可以消除部分相同的积分求解

(5) ∫ 0 π 2 d x 1 + cos ⁡ 2 x ; \displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\mathrm{d}x}{1+\cos^2x}; 02π1+cos2xdx;

  注意到 lim ⁡ x → π 2 − arctan ⁡ tan ⁡ x 2 = π 2 \lim\limits_{x\to\frac{\pi}{2}^-}\arctan\cfrac{\tan x}{\sqrt{2}}=\cfrac{\pi}{2} x2πlimarctan2 tanx=2π,因此有
∫ 0 π 2 d x 1 + cos ⁡ 2 x = ∫ 0 π 2 sec ⁡ 2 x d x sec ⁡ 2 x + 1 = ∫ 0 π 2 d ( tan ⁡ x ) tan ⁡ 2 x + 2 = [ 1 2 arctan ⁡ tan ⁡ x 2 ] ∣ 0 π 2 = π 2 2 . \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\mathrm{d}x}{1+\cos^2x}&=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sec^2x\mathrm{d}x}{\sec^2x+1}=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\mathrm{d}(\tan x)}{\tan^2x+2}\\ &=\left[\cfrac{1}{\sqrt{2}}\arctan\cfrac{\tan x}{\sqrt{2}}\right]\Biggm\vert^{\frac{\pi}{2}}_0=\cfrac{\pi}{2\sqrt{2}}. \end{aligned} 02π1+cos2xdx=02πsec2x+1sec2xdx=02πtan2x+2d(tanx)=[2 1arctan2 tanx]02π=22 π.
这道题利用三角函数代换公式求解

12.设为连续函数,证明 ∫ 0 x f ( t ) ( x − t ) d t = ∫ 0 x ( ∫ 0 t f ( u ) d u ) d t . \displaystyle\int^x_0f(t)(x-t)\mathrm{d}t=\displaystyle\int^x_0\left(\displaystyle\int^t_0f(u)\mathrm{d}u\right)\mathrm{d}t. 0xf(t)(xt)dt=0x(0tf(u)du)dt.


∫ 0 x ( ∫ 0 t f ( u ) d u ) d t = [ t ∫ 0 t f ( u ) d u ] ∣ 0 x − ∫ 0 x t f ( t ) d t = x ∫ 0 x f ( u ) d u − ∫ 0 x t f ( t ) d t = x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t = ∫ 0 x f ( t ) ( x − t ) d t . \begin{aligned} \displaystyle\int^x_0\left(\displaystyle\int^t_0f(u)\mathrm{d}u\right)\mathrm{d}t&=\left[t\displaystyle\int^t_0f(u)\mathrm{d}u\right]\Biggm\vert^x_0-\displaystyle\int^x_0tf(t)\mathrm{d}t\\ &=x\displaystyle\int^x_0f(u)\mathrm{d}u-\displaystyle\int^x_0tf(t)\mathrm{d}t\\ &=x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0tf(t)\mathrm{d}t=\displaystyle\int^x_0f(t)(x-t)\mathrm{d}t. \end{aligned} 0x(0tf(u)du)dt=[t0tf(u)du]0x0xtf(t)dt=x0xf(u)du0xtf(t)dt=x0xf(t)dt0xtf(t)dt=0xf(t)(xt)dt.
  本题也可利用原函数性质来证明,记等式左端的函数为 F ( x ) F(x) F(x)、右端的函数为 G ( x ) G(x) G(x),则
F ′ ( x ) = ( x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t ) ′ = ∫ 0 x f ( t ) d t , G ′ ( x ) = ∫ 0 x f ( u ) d u = ∫ 0 x f ( t ) d t . \begin{aligned} F'(x)&=\left(x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0tf(t)\mathrm{d}t\right)'=\displaystyle\int^x_0f(t)\mathrm{d}t,\\ G'(x)&=\displaystyle\int^x_0f(u)\mathrm{d}u=\displaystyle\int^x_0f(t)\mathrm{d}t. \end{aligned} F(x)G(x)=(x0xf(t)dt0xtf(t)dt)=0xf(t)dt,=0xf(u)du=0xf(t)dt.
  即 F ( x ) F(x) F(x) G ( x ) G(x) G(x)都为函数 ∫ 0 x f ( t ) d t \displaystyle\int^x_0f(t)\mathrm{d}t 0xf(t)dt的原函数,因此它们至多只差一个常数,但由于 F ( 0 ) = G ( 0 ) = 0 F(0)=G(0)=0 F(0)=G(0)=0,因此必有 F ( x ) = G ( x ) F(x)=G(x) F(x)=G(x)。(这道题利用原函数性质或分部积分法求解

16.证明: ∫ 0 + ∞ x n e − x 2 d x = n − 1 2 ∫ 0 + ∞ x n − 2 e − x 2 d x ( n > 1 ) \displaystyle\int^{+\infty}_0x^ne^{-x^2}\mathrm{d}x=\cfrac{n-1}{2}\displaystyle\int^{+\infty}_0x^{n-2}e^{-x^2}\mathrm{d}x(n>1) 0+xnex2dx=2n10+xn2ex2dx(n>1),并用它证明: ∫ 0 + ∞ x 2 n + 1 e − x 2 d x = 1 2 Γ ( n + 1 ) ( n ∈ N ) . \displaystyle\int^{+\infty}_0x^{2n+1}e^{-x^2}\mathrm{d}x=\cfrac{1}{2}\Gamma(n+1)\quad(n\in\bold{N}). 0+x2n+1ex2dx=21Γ(n+1)(nN).

  当 n > 1 n>1 n>1时,
∫ 0 + ∞ x n e − x 2 d x = − 1 2 ∫ 0 + ∞ x n d ( e − x 2 ) = − 1 2 [ x n − 1 e − x 2 ] ∣ 0 + ∞ + n − 1 2 ∫ 0 + ∞ x n − 2 e − x 2 d x = n − 1 2 ∫ 0 + ∞ x n − 2 e − x 2 d x . \begin{aligned} \displaystyle\int^{+\infty}_0x^ne^{-x^2}\mathrm{d}x&=-\cfrac{1}{2}\displaystyle\int^{+\infty}_0x^n\mathrm{d}(e^{-x^2})\\ &=-\cfrac{1}{2}[x^{n-1}e^{-x^2}]\biggm\vert^{+\infty}_0+\cfrac{n-1}{2}\displaystyle\int^{+\infty}_0x^{n-2}e^{-x^2}\mathrm{d}x\\ &=\cfrac{n-1}{2}\displaystyle\int^{+\infty}_0x^{n-2}e^{-x^2}\mathrm{d}x. \end{aligned} 0+xnex2dx=210+xnd(ex2)=21[xn1ex2]0++2n10+xn2ex2dx=2n10+xn2ex2dx.
  记 I n = ∫ 0 + ∞ x 2 n + 1 e − x 2 d x I_n=\displaystyle\int^{+\infty}_0x^{2n+1}e^{-x^2}\mathrm{d}x In=0+x2n+1ex2dx,则
I n = ∫ 0 + ∞ x 2 n + 1 e − x 2 d x = 2 n + 1 − 1 2 ∫ 0 + ∞ x 2 n − 1 e − x 2 d x = n ∫ 0 + ∞ x 2 n − 1 e − x 2 d x = n I n − 1 . \begin{aligned} I_n&=\displaystyle\int^{+\infty}_0x^{2n+1}e^{-x^2}\mathrm{d}x=\cfrac{2n+1-1}{2}\displaystyle\int^{+\infty}_0x^{2n-1}e^{-x^2}\mathrm{d}x\\ &=n\displaystyle\int^{+\infty}_0x^{2n-1}e^{-x^2}\mathrm{d}x=nI_{n-1}. \end{aligned} In=0+x2n+1ex2dx=22n+110+x2n1ex2dx=n0+x2n1ex2dx=nIn1.
  因此有
I n = n ! I 0 = n ! ∫ 0 + ∞ x e − x 2 d x = n ! [ − 1 2 e − x 2 ] ∣ 0 + ∞ = 1 2 n ! = 1 2 Γ ( n + 1 ) . \begin{aligned} I_n&=n!I_0=n!\displaystyle\int^{+\infty}_0xe^{-x^2}\mathrm{d}x=n!\left[-\cfrac{1}{2}e^{-x^2}\right]\Biggm\vert^{+\infty}_0\\ &=\cfrac{1}{2}n!=\cfrac{1}{2}\Gamma(n+1). \end{aligned} In=n!I0=n!0+xex2dx=n![21ex2]0+=21n!=21Γ(n+1).
这道题主要利用分部积分法和递归法求解

17.判断下列反常积分的收敛性:

(1) ∫ 0 + ∞ sin ⁡ x x 3 d x ; \displaystyle\int^{+\infty}_0\cfrac{\sin x}{\sqrt{x^3}}\mathrm{d}x; 0+x3 sinxdx;

   x = 0 x=0 x=0为被积函数 f ( x ) = sin ⁡ x x 3 f(x)=\cfrac{\sin x}{\sqrt{x^3}} f(x)=x3 sinx的瑕点,而 lim ⁡ x → 0 + x 1 2 ⋅ f ( x ) = 1 \lim\limits_{x\to0^+}x^{\frac{1}{2}}\cdot f(x)=1 x0+limx21f(x)=1,因此 ∫ 0 1 f ( x ) d x \displaystyle\int^1_0f(x)\mathrm{d}x 01f(x)dx收敛;又由于 ∣ f ( x ) ∣ ⩽ 1 x 3 |f(x)|\leqslant\cfrac{1}{\sqrt{x^3}} f(x)x3 1,而 ∫ 1 + ∞ 1 x 3 d x \displaystyle\int^{+\infty}_1\cfrac{1}{\sqrt{x^3}}\mathrm{d}x 1+x3 1dx收敛,故 ∫ 1 + ∞ f ( x ) d x \displaystyle\int^{+\infty}_1f(x)\mathrm{d}x 1+f(x)dx收敛,因此 ∫ 0 + ∞ sin ⁡ x x 3 d x \displaystyle\int^{+\infty}_0\cfrac{\sin x}{\sqrt{x^3}}\mathrm{d}x 0+x3 sinxdx收敛。(这道题主要利用分段和放缩法求解

(3) ∫ 2 + ∞ cos ⁡ x ln ⁡ x d x ; \displaystyle\int^{+\infty}_2\cfrac{\cos x}{\ln x}\mathrm{d}x; 2+lnxcosxdx;


∫ 2 + ∞ cos ⁡ x ln ⁡ x d x = ∫ 2 + ∞ 1 ln ⁡ x d ( sin ⁡ x ) = [ sin ⁡ x ln ⁡ x ] ∣ 2 + ∞ + ∫ 2 + ∞ sin ⁡ x x ln ⁡ 2 x d x = ∫ 2 + ∞ sin ⁡ x x ln ⁡ 2 x d x − sin ⁡ 2 ln ⁡ 2 . \begin{aligned} \displaystyle\int^{+\infty}_2\cfrac{\cos x}{\ln x}\mathrm{d}x&=\displaystyle\int^{+\infty}_2\cfrac{1}{\ln x}\mathrm{d}(\sin x)=\left[\cfrac{\sin x}{\ln x}\right]\Biggm\vert^{+\infty}_2+\displaystyle\int^{+\infty}_2\cfrac{\sin x}{x\ln^2 x}\mathrm{d}x\\ &=\displaystyle\int^{+\infty}_2\cfrac{\sin x}{x\ln^2 x}\mathrm{d}x-\cfrac{\sin2}{\ln2}. \end{aligned} 2+lnxcosxdx=2+lnx1d(sinx)=[lnxsinx]2++2+xln2xsinxdx=2+xln2xsinxdxln2sin2.
  又由于 ∣ sin ⁡ x x ln ⁡ 2 x ∣ ⩽ 1 x ln ⁡ 2 x \left|\cfrac{\sin x}{x\ln^2 x}\right|\leqslant\cfrac{1}{x\ln^2x} xln2xsinxxln2x1,而 ∫ 2 + ∞ 1 x ln ⁡ 2 x d x \displaystyle\int^{+\infty}_2\cfrac{1}{x\ln^2 x}\mathrm{d}x 2+xln2x1dx收敛,故 ∫ 2 + ∞ ∣ sin ⁡ x x ln ⁡ 2 x ∣ d x \displaystyle\int^{+\infty}_2\left|\cfrac{\sin x}{x\ln^2 x}\right|\mathrm{d}x 2+xln2xsinxdx收敛,即 ∫ 2 + ∞ sin ⁡ x x ln ⁡ 2 x d x \displaystyle\int^{+\infty}_2\cfrac{\sin x}{x\ln^2 x}\mathrm{d}x 2+xln2xsinxdx绝对收敛,因此 ∫ 2 + ∞ cos ⁡ x ln ⁡ x d x \displaystyle\int^{+\infty}_2\cfrac{\cos x}{\ln x}\mathrm{d}x 2+lnxcosxdx收敛。(这道题通过分部积分化简求解

18.计算下列反常积分:

(1) ∫ 0 π 2 ln ⁡ sin ⁡ x d x ; \displaystyle\int^{\frac{\pi}{2}}_0\ln\sin x\mathrm{d}x; 02πlnsinxdx;

   x = 0 x=0 x=0为被积函数 f ( x ) = ln ⁡ sin ⁡ x f(x)=\ln\sin x f(x)=lnsinx的瑕点,而
lim ⁡ x → 0 + x ⋅ f ( x ) = lim ⁡ x → 0 + ln ⁡ sin ⁡ x x − 1 2 = lim ⁡ x → 0 + cot ⁡ x − 1 2 x − 3 2 = lim ⁡ x → 0 + − 2 x − 3 2 tan ⁡ x = 0. \begin{aligned} \lim\limits_{x\to0^+}\sqrt{x}\cdot f(x)&=\lim\limits_{x\to0^+}\cfrac{\ln\sin x}{x^{-\frac{1}{2}}}=\lim\limits_{x\to0^+}\cfrac{\cot x}{-\cfrac{1}{2}x^{-\frac{3}{2}}}\\ &=\lim\limits_{x\to0^+}\cfrac{-2x^{-\frac{3}{2}}}{\tan x}=0. \end{aligned} x0+limx f(x)=x0+limx21lnsinx=x0+lim21x23cotx=x0+limtanx2x23=0.
  故 ∫ 0 π 2 ln ⁡ sin ⁡ x d x \displaystyle\int^{\frac{\pi}{2}}_0\ln\sin x\mathrm{d}x 02πlnsinxdx收敛。
  又 ∫ 0 π 2 ln ⁡ sin ⁡ x d x = ∫ 0 π 4 ln ⁡ sin ⁡ x d x + ∫ π 4 π 2 ln ⁡ sin ⁡ x d x ; \displaystyle\int^{\frac{\pi}{2}}_0\ln\sin x\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0\ln\sin x\mathrm{d}x+\displaystyle\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\ln\sin x\mathrm{d}x; 02πlnsinxdx=04πlnsinxdx+4π2πlnsinxdx;,而
∫ π 4 π 2 ln ⁡ sin ⁡ x d x = x = π 2 − u ∫ π 4 0 − ln ⁡ cos ⁡ u d u = ∫ 0 π 4 ln ⁡ cos ⁡ u d u . \displaystyle\int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\ln\sin x\mathrm{d}x\xlongequal{x=\cfrac{\pi}{2}-u}\displaystyle\int^0_{\frac{\pi}{4}}-\ln\cos u\mathrm{d}u=\displaystyle\int^{\frac{\pi}{4}}_0\ln\cos u\mathrm{d}u. 4π2πlnsinxdxx=2πu 4π0lncosudu=04πlncosudu.
  因此
∫ 0 π 2 ln ⁡ sin ⁡ x d x = ∫ 0 π 4 ln ⁡ sin ⁡ x d x + ∫ 0 π 4 ln ⁡ cos ⁡ x d x = ∫ 0 π 4 ln ⁡ ( sin ⁡ x cos ⁡ x ) d x = ∫ 0 π 4 ( ln ⁡ sin ⁡ 2 x − ln ⁡ 2 ) d x = ∫ 0 π 4 ln ⁡ sin ⁡ 2 x d x − ∫ 0 π 4 ln ⁡ 2 d x = u = 2 x 1 2 ∫ 0 π 2 ln ⁡ sin ⁡ u d u − π 4 ln ⁡ 2. \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_0\ln\sin x\mathrm{d}x&=\displaystyle\int^{\frac{\pi}{4}}_0\ln\sin x\mathrm{d}x+\displaystyle\int^{\frac{\pi}{4}}_0\ln\cos x\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\ln(\sin x\cos x)\mathrm{d}x=\displaystyle\int^{\frac{\pi}{4}}_0(\ln\sin2x-\ln2)\mathrm{d}x\\ &=\displaystyle\int^{\frac{\pi}{4}}_0\ln\sin2x\mathrm{d}x-\displaystyle\int^{\frac{\pi}{4}}_0\ln2\mathrm{d}x\\ &\xlongequal{u=2x}\cfrac{1}{2}\displaystyle\int^{\frac{\pi}{2}}_0\ln\sin u\mathrm{d}u-\cfrac{\pi}{4}\ln2. \end{aligned} 02πlnsinxdx=04πlnsinxdx+04πlncosxdx=04πln(sinxcosx)dx=04π(lnsin2xln2)dx=04πlnsin2xdx04πln2dxu=2x 2102πlnsinudu4πln2.

∫ 0 π 2 ln ⁡ sin ⁡ x d x = − π 2 ln ⁡ 2. \displaystyle\int^{\frac{\pi}{2}}_0\ln\sin x\mathrm{d}x=-\cfrac{\pi}{2}\ln2. 02πlnsinxdx=2πln2.
这道题主要利用分部积分求解

(2) ∫ 0 + ∞ d x ( 1 + x 2 ) ( 1 + x α ) ( α ⩾ 0 ) . \displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}\qquad(\alpha\geqslant0). 0+(1+x2)(1+xα)dx(α0).

  记被积函数为 f ( x ) = 1 ( 1 + x 2 ) ( 1 + x α ) f(x)=\cfrac{1}{(1+x^2)(1+x^\alpha)} f(x)=(1+x2)(1+xα)1,则当 α = 0 \alpha=0 α=0时, lim ⁡ x → + ∞ x 2 ⋅ f ( x ) = 1 2 \lim\limits_{x\to+\infty}x^2\cdot f(x)=\cfrac{1}{2} x+limx2f(x)=21,当 α > 0 \alpha>0 α>0时, lim ⁡ x → + ∞ x 2 ⋅ f ( x ) = 0 \lim\limits_{x\to+\infty}x^2\cdot f(x)=0 x+limx2f(x)=0,因此当 α ⩾ 0 \alpha\geqslant0 α0时, ∫ 0 + ∞ d x ( 1 + x 2 ) ( 1 + x α ) \displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)} 0+(1+x2)(1+xα)dx收敛。
  令 x = 1 t x=\cfrac{1}{t} x=t1,得到 ∫ 0 + ∞ d x ( 1 + x 2 ) ( 1 + x α ) = ∫ + ∞ 0 − t α d t ( 1 + t 2 ) ( 1 + t α ) \displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}=\displaystyle\int^0_{+\infty}\cfrac{-t^\alpha\mathrm{d}t}{(1+t^2)(1+t^\alpha)} 0+(1+x2)(1+xα)dx=+0(1+t2)(1+tα)tαdt,又
∫ + ∞ 0 − t α d t ( 1 + t 2 ) ( 1 + t α ) = ∫ 0 + ∞ x α d x ( 1 + x 2 ) ( 1 + x α ) . \displaystyle\int^0_{+\infty}\cfrac{-t^\alpha\mathrm{d}t}{(1+t^2)(1+t^\alpha)}=\displaystyle\int^{+\infty}_0\cfrac{x^\alpha\mathrm{d}x}{(1+x^2)(1+x^\alpha)}. +0(1+t2)(1+tα)tαdt=0+(1+x2)(1+xα)xαdx.
  故
∫ 0 + ∞ d x ( 1 + x 2 ) ( 1 + x α ) = ∫ 0 + ∞ x α d x ( 1 + x 2 ) ( 1 + x α ) = 1 2 [ ∫ 0 + ∞ d x ( 1 + x 2 ) ( 1 + x α ) + ∫ 0 + ∞ x α d x ( 1 + x 2 ) ( 1 + x α ) ] = 1 2 ∫ 0 + ∞ d x 1 + x 2 = 1 2 [ arctan ⁡ x ] ∣ 0 + ∞ = π 4 . \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}&=\displaystyle\int^{+\infty}_0\cfrac{x^\alpha\mathrm{d}x}{(1+x^2)(1+x^\alpha)}\\ &=\cfrac{1}{2}\left[\displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{(1+x^2)(1+x^\alpha)}+\displaystyle\int^{+\infty}_0\cfrac{x^\alpha\mathrm{d}x}{(1+x^2)(1+x^\alpha)}\right]\\ &=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{\mathrm{d}x}{1+x^2}=\cfrac{1}{2}[\arctan x]\biggm\vert^{+\infty}_0=\cfrac{\pi}{4}. \end{aligned} 0+(1+x2)(1+xα)dx=0+(1+x2)(1+xα)xαdx=21[0+(1+x2)(1+xα)dx+0+(1+x2)(1+xα)xαdx]=210+1+x2dx=21[arctanx]0+=4π.
这道题主要利用换元法凑整求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,参考的积分表及公式见附录

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据以下考纲筛选考试重点**第一章 函数、极限与连续** 1. 函数 (1)理解函数的概念,掌握函数的表示法,会建立简单应用问题中的函数关系。 (2)了解函数的有界性、单调性、周期性和奇偶性。 (3)理解复合函数及分段函数的概念。 (4)掌握基本初等函数的性质及其图形,理解初等函数的概念。 2.数列与函数的极限 (1)理解数列极限和函数极限(包括左极限和右极限)的概念,了解极限的性质。 (2)掌握极限四则运算法则,会应用两个重要极限。 3.函数的连续性 (1)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 (2)了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理)及其简单应用。 **第二章 导数与微分** 1.导数概念 理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义及物理意义。 2.函数的求导法则 掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则。 3.高阶导数 理解高阶导数的概念,会求简单函数的高阶导数。 4.函数的微分 理解微分的概念,掌握导数与微分之间的关系,会求函数的微分。 **第三章 导数的应用** 1.洛必达法则 掌握用洛必达法则求未定式极限的方法。 2.函数的单调性、极值、最大值与最小值 (1)掌握函数单调性的判别方法及其应用。 (2)掌握函数极值、最大值和最小值的求法,会求解较简单的应用问题。 **第四章 不定积分** 1.不定积分的概念与性质 理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式。 2.不定积分的方法 掌握不定积分的换元积分法和分部积分法。 **第五章 定积分及其应用** 1.定积分的概念与性质 理解定积分的概念,了解定积分的几何意义、基本性质。 2.定积分的计算方法 理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。 3. 会利用定积分计算平面图形的面积。
最新发布
03-22

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值