单变量微积分笔记——导数的应用

本文内容对应我的博客中微积分笔记总目录下的第二章,导数和微分的应用。

2. 导数和微分的应用(Applications)

本章主要总结一些导数的应用和一条与导数有关的定理(中值定理)

2.1 线性和二次近似(Linear and Quadratic Approximation)

2.1.1 线性近似

什么是线性近似?

如果已知函数 f ( x ) f(x) f(x) 的某一点坐标 ( x 0 ,   f ( x 0 ) ) (x_0,\ f(x_0)) (x0, f(x0)) 和这一点的导数 f ′ ( x 0 ) f'(x_0) f(x0),我们就可以该点的切线来估计 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 附近的数值,即: f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)
从图像上理解的话参考下图。在这里插入图片描述

如何理解线性近似?

从导数的定义中我们知道:
f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ f Δ x f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta f}{\Delta x} f(x0)=Δx0limΔxΔf
这时候我们从右往左思考这个方程,会发现,
Δ f Δ x = f ( x ) − f ( x 0 ) x − x 0 ≈ f ′ ( x 0 ) \frac{\Delta f}{\Delta x}=\frac{f(x)-f(x_0)}{x-x_0}\approx f'(x_0) ΔxΔf=xx0f(x)f(x0)f(x0)
化简之后很显然:
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)
需要注意线性近似的前提一定是 Δ x \Delta x Δx 足够小才可以。如果超出这个范围,参考上图可以发现,结果是非常非常不准确的。
另外,为了再简化整个求解过程,通常我们会让 x 0 = 0 x_0=0 x0=0,显然函数得在零点有导数。公式就简化成
f ( x ) ≈ f ( 0 ) + f ′ ( 0 ) x f(x)\approx f(0)+f'(0)x f(x)f(0)+f(0)x
例如,正余弦函数在零点附近的的线性近似:
在这里插入图片描述

无穷小量与线性近似

与上文的公式相比,用无穷小量来表示线性近似更简单,由于我们要求解的点几乎紧挨着点 ( x ,   y ) (x,\ y) (x, y),所以此点可以表示成 ( x 0 + d x ,   y 0 + d y ) (x_0+dx,\ y_0+dy) (x0+dx, y0+dy),那么
f ( x 0 + d x ) ≈ y + d y f(x_0+dx)\approx y+dy f(x0+dx)y+dy
其中 d y = dy= dy=,最后的公式为:
f ( x 0 + d x ) ≈ y + f ′ ( x 0 ) d x f(x_0+dx)\approx y+f'(x_0)dx f(x0+dx)y+f(x0)dx

常用函数在零点的线性近似总结:
  1. sin ⁡ x ≈ x cos ⁡ x ≈ 1 ( if x ≈ 0 ) \sin x\approx x\quad \cos x\approx1\quad(\text{if} \quad x\approx 0) sinxxcosx1(ifx0)
  2. ln ⁡ ( 1 + x ) ≈ x o r ln ⁡ x ≈ x − 1 ( if x ≈ 0 ) \ln(1+x)\approx x\quad or \quad\ln x\approx x-1\quad(\text{if} \quad x\approx 0) ln(1+x)xorlnxx1(ifx0)
  3. ( 1 + x ) r ≈ 1 + r x ( if x ≈ 0 ) (1+x)^r\approx 1+rx\quad(\text{if} \quad x\approx 0) (1+x)r1+rx(ifx0)
  4. e x ≈ 1 + x ( if x ≈ 0 ) e^x\approx 1+x\quad(\text{if} \quad x\approx 0) ex1+x(ifx0)

对于比较复杂的函数,比如 P ( x ) / Q ( x ) P(x)/Q(x) P(x)/Q(x) 这种形式的函数,我们可以直接带入 P ( x ) ,   Q ( x ) P(x),\ Q(x) P(x), Q(x) 的线性近似再相除即可。

2.1.2 二次近似

相关公式

二次近似的公式只是在线性近似的基础上加了一个二次项,即:
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) ⎵ Linear Part + f ′ ′ ( x 0 ) 2 ( x − x 0 ) 2 ⎵ Quadratic Part f(x)\approx \underbrace{f(x_0)+f'(x_0)(x-x_0)}_{\text{Linear Part}}+\underbrace{\frac{f''(x_0)}{2}(x-x_0)^2}_\text{Quadratic Part} f(x)Linear Part f(x0)+f(x0)(xx0)+Quadratic Part 2f(x0)(xx0)2
在零点附近的二次近似公式为:
f ( x ) ≈ f ( 0 ) + f ′ ( 0 ) x ⎵ Linear Part + f ′ ′ ( 0 ) 2 x 2 ⎵ Quadratic Part f(x)\approx \underbrace{f(0)+f'(0)x}_{\text{Linear Part}}+\underbrace{\frac{f''(0)}{2}x^2}_\text{Quadratic Part} f(x)Linear Part f(0)+f(0)x+Quadratic Part 2f(0)x2

如何解释多出来的二次项?

一切都源于二次函数的一般形式, f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c
它的一阶和二阶导数为:
f ′ ( x ) = 2 a x + b ; f ′ ′ ( x ) = 2 a f'(x)=2ax+b;\quad f''(x)=2a f(x)=2ax+b;f(x)=2a
带入点 x 0 x_0 x0,可以算出:
f ′ ′ ( x 0 ) = 2 a → a = f ′ ′ ( x 0 ) 2 f''(x_0)=2a\quad \to\quad a=\frac{f''(x_0)}{2} f(x0)=2aa=2f(x0)

(二次近似与之后的泰勒级数是一致的)

当要求复杂函数的二次近似的时候,多项式与多项式成绩之后的结果一定包含比二次项更高阶的项,但是不需要考虑这些高阶项,直接删掉即可。

2.2 画草图(Curve Sketching)

粗略地画出一个给定函数的图像有助于我们理解函数的一些性质。在画图的过程中,导数有着非同小可的作用。

步骤

画草图的一般思路是从一些特殊的点着手,之后看一阶二阶导数,最后整合信息画图。
具体步骤为:

  1. 画出以下的点:
  • 函数的终止点,即 x → ± ∞ x\to\pm\infty x±
  • 不连续的点(没有定义的点,如分母为0的情况)
  • 其他容易求的点(option)
  1. 找出临界点(Critical Point)和拐点(Inflection Point),即 f ′ ( x ) = 0 f'(x)=0 f(x)=0 的点 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0)),并找到自变量 x x x 的区间。
  2. 判断 f ′ ( x ) &gt; 0 f&#x27;(x)&gt;0 f(x)>0 或者 f ′ ( x ) &lt; 0 f&#x27;(x)&lt;0 f(x)<0 的区间,并判断其增减性(在某一区间内, f ′ ( x ) &gt; 0 f&#x27;(x)&gt;0 f(x)>0 函数递增, f ′ ( x ) &lt; 0 f&#x27;(x)&lt;0 f(x)<0 函数递减,增减性的证明请参考‘中值定理’部分)
  3. 判断 f ′ ′ ( x ) &gt; 0 f&#x27;&#x27;(x)&gt;0 f(x)>0 或者 f ′ ′ ( x ) &lt; 0 f&#x27;&#x27;(x)&lt;0 f(x)<0 的区间,并判断其凹凸性(在某一区间内, f ′ ′ ( x ) &gt; 0 f&#x27;&#x27;(x)&gt;0 f(x)>0 函数concave up, f ′ ′ ( x ) &lt; 0 f&#x27;&#x27;(x)&lt;0 f(x)<0 函数concave down;这里,Concave的朗文字典解释是:a concave surface is curved inwards in the middle,意思是有一条水平直线,concave up就是直线两端向上弯曲,反之向下,请自行理解)
  4. 整合以上信息,开始做图。

最值

由以上步骤,求函数的最大值和最小值也就非常明显了。
最大值的地方: f ′ ( x 0 ) = 0 ,   f ′ ′ ( x 0 ) &lt; 0 f&#x27;(x_0)=0,\ f&#x27;&#x27;(x_0)&lt;0 f(x0)=0, f(x0)<0
最小值的地方: f ′ ( x 0 ) = 0 ,   f ′ ′ ( x 0 ) &gt; 0 f&#x27;(x_0)=0,\ f&#x27;&#x27;(x_0)&gt;0 f(x0)=0, f(x0)>0
(通过隐式函数微分的方法求出来的最值点,其表达式可以写成 x ,   y x,\ y x, y比例,因此也被称为相对率,Related Rates

举例

画出函数 f ( x ) = x / ln ⁡ x f(x)=x/\ln x f(x)=x/lnx的大致曲线。
中间步骤我就不写了,结果如下
在这里插入图片描述

2.3 牛顿法求根(Newton’s Method)

在听到牛顿法求根这一段的时候,我突然想到大二在学《MATLAB与数值计算》这门课程时详细介绍了牛顿法,这是一个比较好理解的计算机处理函数根的方法之一。

基本思路

牛顿法的基本思路是先猜一个可能的点(最好靠近根,如果离函数的根太远就会找错根甚至找不到),然后通过做该点的切线找到与 x x x轴的交点,再以此类推,直到找到准确的根或者满足人为设定的准确度即可。

定义及表达式

每一次迭代的代数表达式为:
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\frac{f(x_n)}{f&#x27;(x_n)} xn+1=xnf(xn)f(xn)

简单验证(Double Check!)
在这里插入图片描述
如上图所示,红线代表在点 x 0 x_0 x0 处的切线,通过几何关系我们可以得到:
f ′ ( x 0 ) = 0 − f ( x 0 ) x 1 − x 0 → x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) f&#x27;(x_0)=\frac{0-f(x_0)}{x_1-x_0}\quad \to \quad x_1=x_0-\frac{f(x_0)}{f&#x27;(x_0)} f(x0)=x1x00f(x0)x1=x0f(x0)f(x0)
之后的迭代也同理。

每次迭代准确率的变化

为了衡量牛顿法的准确率,我们需要在每次迭代后计算误差 E n = ∣ x − x n ∣ E_n=|x-x_n| En=xxn,公式中的 x x x 代表函数准确的零点, x n x_n xn 是估算值。经过实验发现,每次迭代之后的误差数量级是以二次方的速度下降的。如下表,

E 0 E_0 E0 E 1 E_1 E1 E 2 E_2 E2 E 3 E_3 E3 E 4 E_4 E4
1 0 − 1 10^{-1} 101 1 0 − 2 10^{-2} 102 1 0 − 4 10^{-4} 104 1 0 − 8 10^{-8} 108 1 0 − 16 10^{-16} 1016

如果initial guess比较合理,那么只需要几次迭代,牛顿法就能找到比较准确的零点了。
但要注意的是,牛顿法在 ∣ f ′ ( x ) ∣ |f&#x27;(x)| f(x) 的值特别小(如 ln ⁡ x \ln x lnx), ∣ f ′ ′ ( x ) ∣ |f&#x27;&#x27;(x)| f(x) 特别大的时候(如非常陡的抛物线)会失去效力;除此之外,第一个数猜错了会导致牛顿法的结果并不是我们想要的零点,甚至会不断震荡(震荡原理如下图)。
在这里插入图片描述

2.4 中值定理(Mean Value Theorem)

中值定理也涉及到了导数,所以我把中值定理归类到了导数的应用当中。

2.4.1 中值定理的内容

如果函数 f ( x ) f(x) f(x) 在区间 x ∈ ( a , b ) x\in(a,b) x(a,b) 是可导的,在区间 x ∈ [ a , b ] x\in[a,b] x[a,b] 上是连续的,那么
f ( b ) − f ( a ) b − a = f ′ ( c ) ( for   a ≤ c ≤ b ) \frac{f(b)-f(a)}{b-a}=f&#x27;(c)\quad (\text{for}\ \ a\leq c\leq b) baf(b)f(a)=f(c)(for  acb)
min ⁡ a ≤ x ≤ b f ′ ( c ) ≤ f ( b ) − f ( a ) b − a = f ′ ( c ) ≤ max ⁡ a ≤ x ≤ b f ′ ( c ) \min_{a\leq x\leq b}f&#x27;(c)\leq\frac{f(b)-f(a)}{b-a}=f&#x27;(c)\leq \max_{a\leq x\leq b}f&#x27;(c)\quad axbminf(c)baf(b)f(a)=f(c)axbmaxf(c) ( for   a ≤ c ≤ b ) (\text{for}\ \ a\leq c\leq b) (for  acb)

2.4.2 中值定理的几何解释

用几何图形来解释中值定理的过程如下图所示,
在这里插入图片描述
(注意,与 a ,   b a,\ b a, b 两点割线斜率相同的点在给定区间 ( a , b ) (a,b) (a,b) 可以有很多,并不是惟一的)

2.4.3 中值定理的应用

A. 用中值定理证明函数增减行和其导数的关系

早在高中时候我们就学到,在某一区间内,如果 f ′ &gt; 0 f&#x27;&gt;0 f>0,函数递增;如果 f ′ &lt; 0 f&#x27;&lt;0 f<0,函数递减。中值定理为我们提供了证明方法。
中值定理的内容是: f ( b ) − f ( a ) b − a = f ′ ( c ) ( for   a ≤ c ≤ b ) \frac{f(b)-f(a)}{b-a}=f&#x27;(c)\quad (\text{for}\ \ a\leq c\leq b) baf(b)f(a)=f(c)(for  acb)
可以得到,
f ( b ) − f ( a ) = f ′ ( c ) ( b − a ) f(b)-f(a)=f&#x27;(c)(b-a) f(b)f(a)=f(c)(ba)
在区间 x ∈ [ a , b ] x\in[a,b] x[a,b] b &gt; a b&gt;a b>a,那么如果函数的一阶导数 f ′ ( c ) &gt; 0 f&#x27;(c)&gt;0 f(c)>0,则 f ( b ) &gt; f ( a ) f(b)&gt;f(a) f(b)>f(a),函数单调递增;反之, f ( b ) &lt; f ( a ) f(b)&lt;f(a) f(b)<f(a)

B. 证明不等式

例:
求证当 x &gt; 0 x&gt;0 x>0 时, e x &gt; 1 + x e^x&gt;1+x ex>1+x
f ( x ) = e x − ( 1 + x ) f(x)=e^x-(1+x) f(x)=ex(1+x) f ( 0 ) = 0 f(0)=0 f(0)=0 f ′ ( x ) = e x − 1 f&#x27;(x)=e^x-1 f(x)=ex1。当 x &gt; 0 x&gt;0 x>0 时, f ′ ( x ) &gt; 0 f&#x27;(x)&gt;0 f(x)>0,函数递增,所以 f ( x ) = e x − ( 1 + x ) &gt; f ( 0 ) f(x)=e^x-(1+x)&gt;f(0) f(x)=ex(1+x)>f(0),即 e x &gt; 1 + x e^x&gt;1+x ex>1+x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值