**
什么是语义分割?
**
原文:https://zhuanlan.zhihu.com/p/46200875
语义分割是一种典型的计算机视觉问题,其涉及将一些原始数据(例如,平面图像)作为输入并将它们转换为具有突出显示的感兴趣区域的掩模。许多人使用术语全像素语义分割(full-pixel semantic segmentation),其中图像中的每个像素根据其所属的感兴趣对象被分配类别ID。
早期的计算机视觉问题只发现边缘(线条和曲线)或渐变等元素,但它们从未完全按照人类感知的方式提供像素级别的图像理解。语义分割将属于同一目标的图像部分聚集在一起来解决这个问题,从而扩展了其应用领域。
注意,与其他基于图像的任务相比,语义分割是完全不同的且先进的,例如,
图像分类:识别图像中存在的内容。
物体识别和检测 :识别图像中的内容和位置(通过边界框)。
语义分割: 识别图像中存在的内容以及位置(通过查找属于它的所有像素)。
你设计的机器学习模型是否需要识别输入原始平面图像中的每个像素?在这种情况下,全像素语义分割标注是机器学习模型的关键。全像素语义分割根据其所属的感兴趣对象分配图像中的每个像素具有的类别ID。
下面定义语义分割的类型,以便更好地理解其相关概念。