论文自学笔记:Deep Learning Enabled SemanticCommunication Systems

本文探讨了基于Transformer的DeepSC在文本传输中的应用,解决了语义通信中的定义含义、衡量误差和联合编码设计问题。同时提及BERT、RNN、CNN和FCN在NLP中的作用,并指出信道编码中的训练疑点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepSC:用于文本传输。

基于Transformer, DeepSC旨在通过恢复句子的含义来最大化系统容量并最小化语义错误,而不是传统通信中的比特或符号错误。

对于语义通信系统,我们面临以下问题:

问题1:如何定义比特背后的含义?

自注意机制可以学习语义

问题2:如何衡量句子的语义错误?

提出了一种新的度量标准来准确地反映DeepSC在语义层面的性能

问题3:如何联合设计语义编码和信道编码?

在提出的DeepSC中,设计了一种联合语义信道编码来处理信道噪声和语义失真,在压缩数据时可以保留语义信息

由于硬件计算能力的提高,训练神经网络并在移动设备上运行成为可能。

一种通用的单词表示模型,称为来自变压器的双向编码器表示(BERT),用于为各种NLP任务提供单词向量,而无需重新设计单词表示。

RNN:语言模型可以学习整个句子并有效地捕获语法信息,然而,对于长句子,特别是主谓之间的距离超过10个单词时,rnn无法找到正确的主谓。

CNN:天生具有并行计算的能力。然而,即使cnn可以使用更深层的网络来提取长句子中的语义信息,其性能也不如rnn,因为cnn中的核尺寸较小,无法保证计算效率。

FCN:如Transformer,通过与注意机制相结合,更多地关注有用的语义信息,以提高各种NLP任务的性能。值得注意的是,Transformer同时具有rnn和cnn的优点。特别是采用了自注意机制,使模型能够理解句子,而不考虑句子的长度。


2、信道编码和解码设计

互信息可以为训练接收机提供额外的信息

通过最大化互信息来优化编码器,其损失函数可以由式给出



疑点:

网络训练考虑了前向传播中将channel layer作为网络中的一层

但是反向传播Y->X的算法中目前没有会应用加噪声的,所以似乎与实际信道不相符合?

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值