【论文+代码】PEBAL/Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban

CSDN同步更新:http://t.csdn.cn/P0YGb
博客园同步更新:https://www.cnblogs.com/StarTwinkle/p/16571290.html

【初步理解,更新补充中…】

Github:https://github.com/tianyu0207/PEBAL

Article


Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes

复杂城市驾驶场景异常分割的像素级能量偏置弃权学习

image-20220807090219904
@article{YuanhongChen2022PixelwiseEA,
  title={Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on  Complex Urban Driving Scenes},
  author={Yuanhong Chen and Yu Tian and Yuyuan Liu and Guansong Pang and Fengbei Liu and Gustavo Carneiro},
  journal={arXiv: Computer Vision and Pattern Recognition},
  year={2022}
}

论文十问:

Q1论文试图解决什么问题?

复杂城市场景中,保证ID(in-distribution)对象分类准确前提下,准确识别出异常像素(OOD,Out-of-Distribution对象)

in-distribution: 分布内对象,训练时已知的对象
Out-of-Distribution: 异常对象,训练时未见过的对象

Q2这是否是一个新的问题?

之前已经有相关的研究,比如不确定度的方法和重建方法

Q3这篇文章要验证一个什么科学假设?

  1. 自适应惩罚的放弃学习在像素集的异常检测中是有用的
  2. 平滑性、稀疏性约束是有用的
  3. 微调模型比重新训练效果更好

Q4有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?

基于方法分类,比如:不确定度,重建

基于是否引入了异常像素进行分类,引入异常像素一般效果会比较好一些,但是也有一些缺点(如不可能引入真实世界的所有异常,可能会有危险)

Q5论文中提到的解决方案之关键是什么?

  1. 将图像级的放弃学习应用到逐像素的异常检测上,采用自适应惩罚。
  2. 微调模型,不重新训练

Q6论文中的实验是如何设计的?

在不同数据集上验证模型的整体性能。

消融实验证明AL,EBM以及这两个模块联合训练的有效性。

文章4.6节,选择了笔记本电脑等不可能在路上出现的物体、只选择一类异常进行训练,在Fishyscapes上仍达到了SOTA性能。这证明模型的稳健型,不需要仔细选择OE类,可以用于现实世界的自动驾驶系统。

Q7用于定量评估的数据集是什么?代码有没有开源?

  1. LostAndFound
  2. Fishyscapes
  3. Road Anomaly

代码已经开源

Q8论文中的实验及结果有没有很好地支持需要验证的科学假设?

消融实验证明了每个模块的有效性和联合训练的有效性。

其他部分的实验结果也证明整体达到了SOTA性能

Q9这篇论文到底有什么贡献?

自适应惩罚放弃学习,能量模型,微调,平滑和稀疏约束

Q10下一步呢?有什么工作可以继续深入?

名词解释

Outlier Exposure(OE):离群点暴露。引入异常数据集训练异常检测器

Energy Based Model(EBM):能量模型。对于一个模型有一个定义好的能量函数E(x,y),这个函数当y是x的输出时小,y不是x的输出时大。在本文中局内点(inlier)的能量小,离群点(outlier)的能量大。采用了logsumexp算子

LSE: l o g s u m e x p ( x ) i = l o g ∑ j e x p ( x i j ) logsumexp(x)_i = log \sum \limits_j exp(x_{ij}) logsumexp(x)i=logjexp(xij)torch.logsumexp中采用了优化,避免了指数的上溢出或者下溢出

ECE:Expected Calibrated Error,预期校准误差。详情可见https://xishansnow.github.io/posts/144efbd1

ECE:最小化期望校准误差

Abstract

背景:SOTA的异常分割方法都是基于不确定性估计和重建。

uncertainty:

  1. 直观
  2. 假阳性,将正常像素检测为异常。某些hard-ID靠近分类边界
  3. 假阴性,检测不出异常认为是正常像素。

reconstruction:

  1. 依赖分割结果
  2. 额外网络难以训练;效率低
  3. input不同导致分割模型变化则需要重新训练,适用性不高

提出了新的方法:PEBAL = AL + EBM, 两个模块联合训练

AL, Abstention Learning. 放弃学习,放弃将像素分类为ID标签,而是划分为异常。
EBM, Energy-based Model. 异常像素具有高能量,正常像素具有低能量

Model

得到每像素的一个概率值
p θ ( y ∣ x ) w = e x p ( f θ ( y ; x ) w ) ∑ y ′ ∈ { 1 , . . . , Y + 1 } e x p ( f θ ( y ′ ; x ) w ) p_{\theta}(y|\text{x})_w = \frac{exp(f_{\theta}(y;\text{x})_w)}{\sum_{y' \in \{1,...,Y+1\}} exp(f_{\theta}(y';\text{x})_w)} pθ(yx)w=y{ 1,...,Y+1}exp(fθ(y;x)w)exp(f

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值