【算法】整数划分问题

本文深入探讨了整数划分问题,介绍了将一个正整数表示为一系列正整数之和的概念,即整数划分,并详细解释了正整数n的不同划分个数P(n)的计算方法。通过具体的例子,如整数6的11种不同划分,阐述了求解过程。此外,还提供了一段C++代码实现,用于计算任意正整数n的划分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

整数划分问题是算法中的一个经典命题之一。把一个正整数n表示成一系列正整数之和:
在这里插入图片描述
正整数n的这种表示称为正整数n的划分。正整数n的不同划分个数称为正整数n的划分数,记作P(n) 。
正整数6有如下11种不同的划分,所以P(6)=11。
6
5+1
4+2, 4+1+1
3+3, 3+2+1, 3+1+1+1
2+2+2, 2+2+1+1, 2+1+1+1+1
1+1+1+1+1+1

输入输出样例

注意本题是求值问题,而非求最优解问题,不需要逐个输出各种情况,仅需输出最优值即可
在这里插入图片描述

算法分析

在这里插入图片描述
在这里插入图片描述
对于f(6,4)来说
在这里插入图片描述
在这里插入图片描述
初始值也就是我们要求的正整数n的划分数p(n)=f(n,n)

代码

#include<iostream>
using namespace std;
int split(int n,int m)
{
    if(n==1||m==1)
        return 1;
    else if (n<m)
        return split(n,n);
    else if(n==m)
        return split(n,n-1)+1;
    else
        return split(n,m-1)+split(n-m,m);
}

int main()
{
    int n;
    cin>>n;
    cout<<split(n,n);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值