【ZJU-Machine Learning】后向传播算法

建立的简易模型

在这里插入图片描述

在这里插入图片描述

梯度下降法

在这里插入图片描述

将其泰勒展开,可以看到,f(wk+1)>f(wk)
在这里插入图片描述

建立在简易模型的BP算法

定义目标函数:
在这里插入图片描述
算法流程:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

激活函数

阶跃函数

在这里插入图片描述

sigmoid

将阶跃函数进行改造
在这里插入图片描述

tanh

在这里插入图片描述
在这里插入图片描述

在上述两种 函数中,当x很大时,其函数值变化不大,存在上界,也就是算出来的x很大时,其向后传导的信息被压缩了,也就是所谓的梯度消失。此外,还有可能出现梯度爆炸。

relu

在这里插入图片描述

对于这个函数,当x<0时,使其函数值为0,也就是如果神经元算出,x为负值,那么不再将其向后传播,(也就是杀死这些神经元,使其失活)以减小训练的规模。仅保留x>0的神经元,且不设上界,避免了梯度消失和梯度爆炸,防止过拟合。

Leak Relu

在这里插入图片描述
没有完全杀死那些x<0的神经元,只是降低神经元的活性。

通用的BP算法

(求偏导时,要从后先前求)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ZJU-I型机械臂是一种由浙江大学机器人研究所开发的六自由度机械臂,具有高速、精度和可靠性等特点。机械臂的运动控制是机器人中的重要研究领域之一,其中点到点轨迹规划是机器人在运动过程中最基础和常用的一种方式,也是机械臂控制的核心问题之一。 点到点轨迹规划的目标是通过给定的起点和终点,计算出机械臂的运动轨迹,使机械臂在运动过程中满足机械臂轨迹的连续性、平滑性、可控性等要求。在过去的研究中,经典的点到点轨迹规划方法包括插值法、线性规划法、最小能量法等。 如果使用Python实现机械臂的点到点轨迹规划,可以采用Robotics Toolkit(简称robot)这个模块。robot模块提供了各种从轨迹规划、控制到仿真的功能,可用于ROS、Vrep、Webots等机器人仿真软件。使用robot模块,可以通过几行代码实现机械臂的点到点轨迹规划,例如: ``` from roboticstoolkit import robot from roboticstoolkit.robots import zju # 初始化机器人 zju_arm = robot.Robot('zju', zju.URDF) # 设定起点和终点 start = [0, 0, 0, 0, 0, 0] goal = [0, 1, 1, 0.5, 0, 0] # 计算机械臂的轨迹 path = zju_arm.get_trajectory(start, goal) # 控制机械臂运动到终点 zju_arm.move_to(goal) ``` 其中,`roboticstoolkit`和`roboticstoolkit.robots`都是导入的Python模块,`zju`是机械臂的URDF定义文件,`start`和`goal`是起点和终点的坐标,`get_trajectory()`函数会返回计算得到的机械臂轨迹,`move_to()`函数则控制机械臂运动到终点。 总之,使用Python实现ZJU-I型机械臂的点到点轨迹规划相对简单,只需要导入相应的模块,并根据需要设置机械臂的各种参数,即可轻松实现机械臂的控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值