【Text2SQL 论文】DIN-SQL:分解任务 + 自我纠正 + in-context 让 LLM 完成 Text2SQL

论文:DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction

⭐⭐⭐⭐

NeurIPS 2023, arXiv:2304.11015

Code: Few-shot-NL2SQL-with-prompting | GitHub

一、论文速读

这篇论文通过对 LLM 做 prompt 来实现 Text2SQL,过程中通过 prompt 让 LLM 分解任务来降低难度,每个子任务通过 in-context learning 让 LLM 来完成,并在完成 SQL 生成后,通过 self-correction 来检查和纠正可能有错误的 SQL。最终,在执行精确度指标上超越了现有的 SOTA 模型。

生成 SQL 被分成四个阶段:

  1. Schema Linking:输入 NL query 和 DB schema,找出与 query 相关的 tables、columns 以及不同表之间的外键关系
  2. Classification & Decomposition:将 query 分成了三种不同的难度:EASY、NON-NESTED、NESTED
  3. SQL Generation:根据不同类型的 query,按照不同的策略来生成对应的 SQL
  4. Self-correction:通过 prompt 来让 LLM 检查和纠正可能错误的 SQL

在这里插入图片描述

1.1 Schema Linking Module

这个 module 输入 NL query 和 DB 的 schema 信息,输出的是将 query 链接到 DB 中的一些信息,具体来说输出就是:

  1. table 和 columns 的名称:找到 query 中涉及到的 DB 的 table 和 columns 的名称
  2. 条件值:从查询中提取出用于条件过滤的值,比如在查询“Find the departments with a budget greater than 500”中,需要提取出条件值“500”。
  3. 外键关系的确定:如果查询涉及到多个表,需要确定它们之间的关系,如通过外键连接。

下面是使用 in-context learning + CoT 来让 LLM 做 schema-linking 的示例:

在这里插入图片描述

demostration 的一个示例如下:

Table advisor, columns = [*,s_ID,i_ID]
Table classroom, columns = [*,buildi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值