【Text2SQL 论文】MCS-SQL:利用多样 prompts + 多项选择来做 Text2SQL

论文:MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation

⭐⭐⭐

arXiv:2405.07467

一、论文速读

已有研究指出,在使用 LLM 使用 ICL 时,ICL 的 few-shot exemplars 的内容、呈现顺序都会敏感地影响 LLM 的输出。基于此,本文提出通过使用多个 prompts 并利用 LLM 的 ICL exemplars 的敏感性,来扩大 LLM 的搜索空间,得到 LLM 的多个响应 SQL,然后再做一个多项选择,从中选出最终的 SQL 作为输出

MCS-SQL 模型包含三个主要步骤:

  1. schema linking:筛选出相关的 DB schema
  2. multiple SQL generation:利用多个 prompts 来让 LLM 生成多个 SQL
  3. multiple choice selection:从多个 SQL 中选出最终的 SQL

二、MCS-SQL 模型

这里分别介绍这个模型的三个步骤。

2.1 Schema Linking

Schema Linking 就是识别出与 question 相关的 DB tables 和 columns。这里分成两步来做:先 table linking,再 column linking。

Table Linking:将 question、DB schema 给 LLM,让 LLM 以 JSON 格式输出选出的 tables 以及理由。一个 prompt 示例如下图。为了鲁棒性,这一步使用了 p t p_t pt 个 prompts,每个 prompt 让 LLM 生成 n 次响应,共得到 p t ⋅ n p_t \cdot n p<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值