【Text2SQL 论文】QDecomp:探索 CoT-style 的 prompt 来解决 Text2SQL

论文:Exploring Chain of Thought Style Prompting for Text-to-SQL

⭐⭐⭐⭐

EMNLP 2023, arXiv:2305.14215

一、论文速读

本文通过对 LLM 使用 CoT-style 的 prompting 方法来解决 Text2SQL 问题,试图回答下面两个问题:

  1. 哪种 prompting style 更好:在一个 pass 中生成所有推理步骤好,还是迭代 prompting 并解决问题好?
  2. 详细的推理步骤对于 Text2SQL 任务来说是否会产生更好的结果?

论文在四种多步推理的 prompting 方法上做了试验,并对比了效果,下面分别介绍。

二、用于 Text2SQL 的多步推理的 prompting 方法

下图是四种 prompting 的示例,输入的是相同的 DB schema 和 question,不同的 prompting 方法有期待的不同的输出:

在这里插入图片描述

2.1 Chain-of-Thought Prompting

CoT 旨在在预测答案之前先生成一系列中间步骤从而提高 LLM 的推理能力&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值