PAT-A 1127 ZigZagging on a Tree (30 分)

假设一个二叉树上各结点的权值互不相同。

我们就可以通过其后序遍历和中序遍历来确定唯一二叉树。

请你输出该二叉树的 Z 字形遍历序列----也就是说,从根结点开始,逐层遍历,第一层从右到左遍历,第二层从左到右遍历,第三层从右到左遍历,以此类推。

例如,下图所示二叉树,其 Z 字形遍历序列应该为:1 11 5 8 17 12 20 15。

在这里插入图片描述

输入格式
第一行包含整数 N,表示二叉树结点数量。

第二行包含 N 个整数,表示二叉树的中序遍历序列。

第三行包含 N 个整数,表示二叉树的后序遍历序列。

输出格式
输出二叉树的 Z 字形遍历序列。

数据范围
1≤N≤30
输入样例:
8
12 11 20 17 1 15 8 5
12 20 17 11 15 8 5 1
输出样例:
1 11 5 8 17 12 20 15

思路还是层序遍历记录层级,装入对应的vector下标中。最后输出的时候如果是奇数则reverse一下此时的vector。

#include <bits/stdc++.h>

using namespace std;
struct node
{
    int data;
    struct node*l,*r;
    int level;
};
int max_level=0;
vector<int> v[1010];
int n,inorder[10001],post[10001];
struct node*create(int h1,int h2,int len)//后、中、长度
{
    if(len==0)
    return NULL;
    struct node*p;
    p=new node;
    p->data=post[h1+len-1];
    int i;
    for(i = h2;inorder[i]!=post[h1+len-1];i++);
    int l1 = i-h2;
    int l2 = len-1-l1;
    p->l = create(h1,h2,l1);
    p->r = create(h1+l1,i+1,l2);
    return p;
}
void cengxv(struct node*root)
{
    root->level = 1;
    queue<node*> q;
    q.push(root);
    while(!q.empty())
    {
        node* now = q.front();
        max_level = max(max_level,now->level);
        v[now->level].push_back(now->data);
        q.pop();
        if(now->l)
        {
            now->l->level = now->level+1;
            q.push(now->l);
        }
         if(now->r)
        {
            now->r->level = now->level+1;
            q.push(now->r);
        }
    }
}
int main()
{
        cin >> n;
        for(int i=1;i<=n;i++)
        cin >>inorder[i];
        for(int i=1;i<=n;i++)
        cin >>post[i];
        struct node*root = create(1,1,n);
        cengxv(root);
        for(int i=1;i<=max_level;i++)
        {
            if(i%2!=0)
            reverse(v[i].begin(),v[i].end());
            for(int each:v[i])
            cout <<each<<" ";
        }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值