炼丹学习笔记3---ubuntu2004部署运行openpcdet记录

前言
环境 cuda 11.3 python 3.8 ubuntu2004

一、cuda环境检测

ylh@y:~/code_ws/OpenPCDet/tools$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Mar_21_19:15:46_PDT_2021
Cuda compilation tools, release 11.3, V11.3.58
Build cuda_11.3.r11.3/compiler.29745058_0

二、创建conda环境

conda create -n pcdet python=3.8

三、安装依赖

pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install av2==0.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install kornia==0.6.8
pip install spconv-cu113
pip install open3d -i https://pypi.tuna.tsinghua.edu.cn/simple

四、编译安装pcdet

使用的是master分支commit 为8cacccec11db6f59bf6934600c9a175dae254806版本

git clone https://github.com/open-mmlab/OpenPCDet.git
python setup.py develop

五、数据预处理

python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

六、训练测试

cd tools/
python train.py --cfg_file ./cfgs/kitti_models/pointpillar.yaml  --batch_size 1 --epochs 50

注意pointpillar.yaml中的USE_ROAD_PLANE设置为False,否则demo会出错
在这里插入图片描述
在这里插入图片描述

七、推理测试

cd tools/
python demo.py --cfg_file ../tools/cfgs/kitti_models/pointpillar.yaml --ckpt ../tools/pth/kitti/pointpillar_7728.pth --data_path ../data/kitti/testing/velodyne/000517.bin

在这里插入图片描述

八、小结

安装时,务必注意python 3.8、cuda 11.3,贴出来的依赖版本均为验证可行。

torch版本安装参考
###################
好记性不如烂笔头
积跬步期千里

### 使用 Stable-Diffusion-WebUI 进行图像生成 为了利用 `stable-diffusion-webUI` 工具进行高效的图像生成,需先安装该工具。通常情况下,可以从 GitHub 下载最新版本的源码[^2]。 #### 安装依赖库 确保本地环境已配置好 Python 和 Git 后,在命令行输入以下指令来克隆仓库并进入项目目录: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ``` 接着按照官方文档说明完成必要的依赖项安装过程。 #### 图像生成功能介绍 启动 Web UI 应用程序之后,可以通过浏览器访问界面来进行交互式的操作。主要功能模块包括但不限于以下几个方面: - **Prompt 输入框**:用于定义想要创建的内容描述语句。这里支持复杂的自然语言表达形式以及特定标记语法,比如权重调整、条件分支等特性[^3]。 - **采样方法选择器**:提供了多种不同的随机漫步算法供用户挑选,默认采用的是 k_euler_a 方案;其他选项还包括 ddim、plms 等不同类型的扩散模型变体。 - **参数调节滑杆组**:允许自定义诸如步数(Steps)、宽度/高度尺寸(Width / Height)、CFG Scale 参数等一系列影响最终效果的关键属性值。 当一切准备就绪后点击“Generate”按钮即可开始渲染流程,并实时查看进度直至获得满意的结果为止。 对于希望进一步定制化体验或是探索更多可能性的技术爱好者来说,则可能涉及到更深层次的功能——即通过微调现有预训练好的权重文件实现个性化风格迁移任务。 #### 模型训练指南概览 如果目标是从零构建全新的艺术作品集而不是简单地基于已有素材做修改的话,那么就需要考虑如何有效地收集标注数据集并对网络架构实施针对性优化了。这一步骤相对复杂得多,涉及到了解深度学习框架的基础知识和技术细节。 不过借助于社区贡献者们分享出来的教程资源和开源脚本包的帮助之下,即使是初学者也能够在较短时间内掌握基本要领。例如,可以参考官方Wiki页面上的指导手册逐步建立起适合自己的工作流管线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值