1.什么是学习率?
学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值,学习率越低,损失函数的变化速度就越慢。虽然使用低学习率可以确保我们不会错过任何局部极小值,但也意味着我们将花费更长的时间来进行收敛。合适的学习率能够使目标函数在合适的时间内收敛到局部最小值。
公式:new_weight = orign_weight — learning_rate * gradient
梯度下降代码:
repeat{
θj=θj−α Δ J ( θ ) Δ θ j \frac{ΔJ(θ)}{Δθj} ΔθjΔJ(θ)