Tensorflow笔记——详解深度学习learning_rate以及如何调整学习率

1.什么是学习率?

  学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值,学习率越低,损失函数的变化速度就越慢。虽然使用低学习率可以确保我们不会错过任何局部极小值,但也意味着我们将花费更长的时间来进行收敛。合适的学习率能够使目标函数在合适的时间内收敛到局部最小值。

公式:new_weight = orign_weight — learning_rate * gradient
梯度下降代码:
repeat{
     θj=θj−α Δ J ( θ ) Δ θ j \frac{ΔJ(θ)}{Δθj} ΔθjΔJ(θ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值