今天给大家分享的是等参单元中的雅可比矩阵行列式与单元面积的关系。
OK,先来普及一下何为雅可比矩阵,维基百科给出的解释是这样的:
在向量分析中,雅可比矩阵(也称作Jacobi矩阵,英语:Jacobian matrix)是函数的一阶偏导数以一定方式排列成的矩阵。—维基百科
身为非数学专业的我们是不是感觉上述概念有些许抽象,在有限元的世界里,雅可比矩阵多出现与等参变换的过程中。
坐标系转换
大家可看一眼下方的图示,简要的表述了等参单元的自然坐标系与物理坐标系变换的关系。
左侧为等参单元在自然坐标系下的表示,为一个规则的正方形单元,边长为2;右侧为物理坐标系下的任意形状四边形单元。两者坐标系通过特殊的变换,即可由其中一个坐标系代表另一个坐标系。
雅可比矩阵马上登场!
[ N I , ξ Q 4 N I , η Q 4 ] = [ x , ξ y , ξ x , η y , η ] [ N I , x Q 4 N I , y Q 4 ] \begin{bmatrix}N_{I,\xi}^{Q4}\\N_{I,\eta}^{Q4}\end{bmatrix}=\begin{bmatrix}x_{,\xi}&y_{,\xi}\\x_{,\eta}&y_{,\eta}\end{bmatrix}\begin{bmatrix}N_{I,x}^{Q4}\\\\N_{I,y}^{Q4}\end{bmatrix} [NI,ξQ4NI,ηQ4]=[x,ξx,ηy,ξ