等参单元的雅可比矩阵行列式与单元面积的关系

今天给大家分享的是等参单元中的雅可比矩阵行列式与单元面积的关系

OK,先来普及一下何为雅可比矩阵,维基百科给出的解释是这样的:

在向量分析中,雅可比矩阵(也称作Jacobi矩阵,英语:Jacobian matrix)是函数的一阶偏导数以一定方式排列成的矩阵。—维基百科

身为非数学专业的我们是不是感觉上述概念有些许抽象,在有限元的世界里,雅可比矩阵多出现与等参变换的过程中

坐标系转换

大家可看一眼下方的图示,简要的表述了等参单元的自然坐标系与物理坐标系变换的关系。

坐标系转换过程

左侧为等参单元在自然坐标系下的表示,为一个规则的正方形单元,边长为2;右侧为物理坐标系下的任意形状四边形单元。两者坐标系通过特殊的变换,即可由其中一个坐标系代表另一个坐标系。

雅可比矩阵马上登场!

[ N I , ξ Q 4 N I , η Q 4 ] = [ x , ξ y , ξ x , η y , η ] [ N I , x Q 4 N I , y Q 4 ] \begin{bmatrix}N_{I,\xi}^{Q4}\\N_{I,\eta}^{Q4}\end{bmatrix}=\begin{bmatrix}x_{,\xi}&y_{,\xi}\\x_{,\eta}&y_{,\eta}\end{bmatrix}\begin{bmatrix}N_{I,x}^{Q4}\\\\N_{I,y}^{Q4}\end{bmatrix} [NI,ξQ4NI,ηQ4]=[x,ξx,ηy,ξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

易木木木响叮当

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值