【阵列信号处理02--基本概念、窄带信号、均匀线阵接收模型】

1、复信号的表示

  实际信号只存在实信号,不存在复信号。

  那么什么时候用实信号?什么时候用复信号呢?
  —实际信号的传输总是用实信号,而在信号处理中则用复信号。

   实信号如何转换为复信号

  采用复信号表示法不仅可以节省频带资源,同时方便计算,而且由于复信号的实部和虚部正好与接收机中的同相支路(I)和正交支路(Q)相对应,所以在系统中采用复信号表示法。

补充理解:
  低通(LP)信号:信号包含的主要频率处于包括直流(DC)在内的低频频带;
  带通(BP)信号:信号包含的主要频率处于离开原点的某个频率附近。

一个实带通信号 s ( t ) s(t) s(t)在数学上可以表示为:
s ( t ) = r ( t ) c o s [ 2 π f 0 t + ϕ x ( t ) ] s(t)=r(t)cos[2πf_0t+\phi_x(t)] s(t)=r(t)cos[2πf0t+ϕx(t)]
  其中, r ( t ) r(t) r(t)是幅度调制或包络, ϕ x ( t ) \phi_x(t) ϕx(t)为相位调制,调制频率为 f m ( t ) = 1 2 π d ϕ x ( t ) d t f_m(t)=\frac{1}{2\pi}\frac{\mathrm{d}\phi_x(t)}{\mathrm{d}t} fm(t)=2π1dtdϕx(t) f 0 ( t ) f_0(t) f0(t)是载波频率。

s ( t ) s(t) s(t)也可以用两个称为正交分量的低通信号表示:
s ( t ) = I ( t ) c o s ⁡ 2 π f 0 t − Q ( t ) s i n ⁡ 2 π f 0 t s(t)=I(t)cos⁡2πf_0t-Q(t)sin⁡2πf_0t s(t)=I(t)cos2πf0tQ(t)sin2πf0t
  其中, I ( t ) = r ( t ) c o s ϕ x ( t ) I(t)=r(t)cos\phi_x(t) I(t)=r(t)cosϕx(t) Q ( t ) = r ( t ) s i n ϕ x ( t ) Q(t)=r(t)sin\phi_x(t) Q(t)=r(t)sinϕx(t)

  • 发射机所发射的信号形态-【正交上变频系统】:
    数字正交上变频系统
    其中 I ( t ) I(t) I(t) Q ( t ) Q(t) Q(t)是正交基带信号, I ( t ) I(t) I(t)为信号同相部分(In-phase), Q ( t ) Q(t) Q(t)为信号正交部分(quadrature),数字正交上变频系统的输出 s ( t ) s(t) s(t)包含了信号的同相部分和正交部分,即包含了信号的幅度信息和相位信息,便于后续的信号处理。
  • 接收机所接收的信号形态-【正交下变频系统】:在这里插入图片描述

2、基本概念补充

2.1 载波:在通信技术上,载波(carrier wave, carrier signal或carrier)是由振荡器产生并在通讯信道上传输的电波,载波或者载频(载波频率)是一个物理概念,是一个特定频率的无线电波,单位是Hz,是一种在频率、幅度或相位方面被调制以传输语言、音频、图象或其它信号的电磁波。载波频率通常比输入信号的频率高,属于高频信号,输入信号调制到一个高频载波上,就好像搭乘了一列高铁或一架飞机一样,然后再被发射和接收。因此,载波是传送信息(话音和数据)的物理基础和承载工具。

2.2 调制(modulation):对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式,就是使载波随信号而改变的技术。

2.3 零中频:将载频变频为零。正交下变频得到的就是零中频信号。
传统的调制解调方式是无线电信号RF(射频)进入天线,转换为IF(中频),再转换为基带(I、Q信号);
零中频就是信号直接由RF变到基带,不经过中频的调制解调方法。

2.4 平面波(plane wave):传播时波面(即波的等相面)为平面的电磁波,实际中并不存在平面波。

在这里插入图片描述

2.5 相干时间:信道保持恒定的最大时间差范围,发射端的同一信号在相干时间之内到达接收端,信号的衰落特性完全相似,接收端认为是一个信号。

2.6 相干带宽:表征多径信道特性的一个重要参数,是指某一特定的频率范围,在该频率范围内的任意两个频率分量都具有很强的幅度相关性,即在相干带宽范围内,多径信道具有恒定的增益和线性相位。

  通常,相干带宽近似等于最大多径时延的倒数.

3、窄带信号的定义

  根据信号带宽的不同,可将信号分为窄带信号和宽带信号。窄带信号与宽带信号的定义是相对的,没有一个非常严格的界限,一般认为不符合窄带信号条件的就是宽带信号。根据侧重内容不同,窄带信号由如下三种定义,满足其中之一,就可视为是窄带信号,否则为宽带信号。

  假设信号为 s ( t ) s(t) s(t),其所对应的频谱为 S ( f ) S(f) S(f)

  • 定义1:相对带宽定义
    W B / f 0 < 1 / 10 W_B/f_0<1/10 WB/f0<1/10
    其中, W B W_B WB为信号带宽, f 0 f_0 f0为信号的中心频率:
    W B = ∫ − ∞ ∞ f ∣ S ( f ) ∣ 2   d f ∫ − ∞ ∞ ∣ S ( f ) ∣ 2   d f W_B=\sqrt{\frac{ \int_{-\infty}^{\infty} f{\left|S(f)\right|}^2\, df}{\int_{-\infty}^{\infty} {\left|S(f)\right|}^2\, df}} WB=S(f)2dffS(f)2df
    f 0 = ∫ − ∞ ∞ f ∣ S ( f ) ∣ 2   d f ∫ − ∞ ∞ ∣ S ( f ) ∣ 2   d f f_0=\frac{ \int_{-\infty}^{\infty} f{\left|S(f)\right|}^2\, df}{\int_{-\infty}^{\infty} {\left|S(f)\right|}^2\, df} f0=S(f)2dffS(f)2df
    定义1是指,窄带信号的带宽 W B W_B WB与其中心频率 f 0 f_0 f0相比可以忽略。

  • 定义2:相对阵列定义
    ( M − 1 ) d c ≪ 1 W B \frac{(M-1)d}{c} \ll \frac{1}{W_B} c(M1)dWB1
    其中, M M M为阵元数目, d d d为阵元间距, c c c为信号在媒介中的传播速度。
    定义2是指,在阵列信号处理中,窄带信号掠过阵列孔径的最大传播时间远远小于信号带宽的倒数。

  • 定义3:相对速度定义
    2 V d c ≪ 1 T ⋅ W B \frac{2V_d}{c}\ll\frac{1}{T\cdot W_B} c2VdTWB1
    其中, V d V_d Vd是信号相对于阵列的径向运动速度, T T T为信号的有效时宽:
    T = ∫ − ∞ ∞ t 2 ∣ s ( t ) ∣ 2   d t ∫ − ∞ ∞ ∣ s ( t ) ∣ 2   d t T=\sqrt{\frac{ \int_{-\infty}^{\infty} t^2{\left|s(t)\right|}^2\, dt}{\int_{-\infty}^{\infty} {\left|s(t)\right|}^2\, dt}} T=s(t)2dtt2s(t)2dt
    T ⋅ W B T\cdot W_B TWB是信号的时宽带宽积。
    定义3是指,在信号与阵列存在相对运动的系统中,在信号的持续时间 T T T内相对于信号的距离分辨力,若目标没有明显的移动,即目标为慢起伏的,则信号可视为是窄带的,否则为宽带的。

4、均匀线阵接收模型

假设接收信号满足窄带条件,根据窄带信号定义2,即信号经过阵列长度所需要的时间应远远小于信号的相干时间,信号包络在天线阵传播时间内变化不大,即可认为 s ( t + Δ τ ) = s ( t ) s(t+\Delta\tau) =s(t) s(t+Δτ)=s(t)。为简化,假定信源和天线阵列在同一平面内,并且入射到天线阵为平面波,如图所示
在这里插入图片描述
其中, θ \theta θ为来波方向, d d d为阵元间距.
一般要求 d ≤ λ 2 d\leq\frac{\lambda}{2} d2λ ∥ \rVert 因为相位测量只能测量 [ 0 , 2 π ] [0,2\pi] [0,2π]范围之内,即要求 ∣ 2 π d s i n θ λ ∣ ≤ π ⇒ 2 π d λ ≤ π ⇒ d ≤ λ 2 \begin{vmatrix} \frac{2\pi d sin\theta}{\lambda} \end{vmatrix}\leq\pi\Rightarrow\frac{2\pi d}{\lambda}\leq\pi\Rightarrow d\leq\frac{\lambda}{2} λ2πdsinθπλ2πdπd2λ

x 1 ( t ) = s ( t ) e j 2 π f 0 t x_1(t)=s(t)e^{j2πf_0t} x1(t)=s(t)ej2πf0t
x 2 ( t ) = x 1 ( t + Δ τ ) = s ( t + Δ τ ) e j 2 π f 0 ( t + Δ τ ) x_2(t)=x_1(t+\Delta\tau)=s(t+\Delta\tau)e^{j2πf_0(t+\Delta\tau)} x2(t)=x1(t+Δτ)=s(t+Δτ)ej2πf0(t+Δτ)
… \dots
x N ( t ) = x 1 [ t + ( N − 1 ) Δ τ ] = s [ t + ( N − 1 ) Δ τ ] e j 2 π f 0 [ t + ( N − 1 ) Δ τ ) ] x_N(t)=x_1[t+(N-1)\Delta\tau]=s[t+(N-1)\Delta\tau]e^{j2πf_0[t+(N-1)\Delta\tau)]} xN(t)=x1[t+(N1)Δτ]=s[t+(N1)Δτ]ej2πf0[t+(N1)Δτ)]
满足窄带假设
可以简化为
x 1 ( t ) = s ( t ) e j 2 π f 0 t x_1(t)=s(t)e^{j2πf_0t} x1(t)=s(t)ej2πf0t
x 2 ( t ) = s ( t ) e j 2 π f 0 t e j 2 π d s i n θ λ x_2(t)=s(t)e^{j2πf_0t}e^{\frac{j2πdsin\theta}{\lambda}} x2(t)=s(t)ej2πf0teλj2πdsinθ
… \dots
x N ( t ) = s ( t ) e j 2 π f 0 t e j 2 π ( N − 1 ) d s i n θ λ x_N(t)=s(t)e^{j2πf_0t}e^{\frac{j2π(N-1)dsin\theta}{\lambda}} xN(t)=s(t)ej2πf0teλj2π(N1)dsinθ

那么对于单个辐射源,阵列接收信号
X ( t ) = [ x 1 ( t ) x 2 ( t ) ⋯ x N ( t ) ] X(t)=\begin{bmatrix} x_1(t)\\ x_2(t)\\ \cdots\\ x_N(t)\\ \end{bmatrix} X(t)=x1(t)x2(t)xN(t) = s ( t ) e j 2 π f 0 t [ 1 e j 2 π d s i n θ λ ⋯ e j 2 π ( N − 1 ) d s i n θ λ ] =s(t)e^{j2πf_0t}\begin{bmatrix} 1\\ e^{\frac{j2πdsin\theta}{\lambda}}\\ \cdots\\ e^{\frac{j2π(N-1)dsin\theta}{\lambda}}\\ \end{bmatrix} =s(t)ej2πf0t1eλj2πdsinθeλj2π(N1)dsinθ(零中频变频后) ⇒ a ⃗ ( θ ) s ( t ) \Rightarrow\vec{a}(\theta)s(t) a (θ)s(t)
其中, a ⃗ ( θ ) \vec{a}(\theta) a (θ)叫作导向矢量,为 N × 1 N×1 N×1的矩阵

推广至多个辐射源( θ 1 , θ 2 , ⋯   , θ k \theta_1,\theta_2,\cdots,\theta_k θ1,θ2,,θk
X ( t ) = a ⃗ ( θ 1 ) s 1 ( t ) + a ⃗ ( θ 2 ) s 2 ( t ) + ⋯ + a ⃗ ( θ k ) s k ( t ) = [ a ⃗ ( θ 1 ) a ⃗ ( θ 2 ) ⋯ a ⃗ ( θ k ) ] [ s 1 ( t ) s 2 ( t ) ⋯ s k ( t ) ] = A ( θ ) S ( k ) \begin{aligned}X(t)&=\vec{a}(\theta_1)s_1(t)+\vec{a}(\theta_2)s_2(t)+\cdots+\vec{a}(\theta_k)s_k(t) =\begin{bmatrix} \vec{a}(\theta_1) & \vec{a}(\theta_2) & \cdots & \vec{a}(\theta_k) \\ \end{bmatrix} \begin{bmatrix} s_1(t)\\ s_2(t)\\ \cdots \\ s_k(t)\\ \end{bmatrix}\\ &=A(\theta)S(k) \end{aligned} X(t)=a (θ1)s1(t)+a (θ2)s2(t)++a (θk)sk(t)=[a (θ1)a (θ2)a (θk)]s1(t)s2(t)sk(t)=A(θ)S(k)
其中, A ( θ ) 为 N × k 的 矩 阵 , S ( k ) 为 k × 1 的 矩 阵 A(\theta)为N×k的矩阵,S(k)为k×1的矩阵 A(θ)N×kS(k)k×1

考虑到噪声影响, n ( t ) = [ n 1 ( t ) n 2 ( t ) ⋯ n N ( t ) ] n(t)=\begin{bmatrix} n_1(t)\\ n_2(t)\\ \cdots \\ n_N(t)\\ \end{bmatrix} n(t)=n1(t)n2(t)nN(t)
均匀线阵接收信号模型为 X ( t ) = A ( θ ) S ( k ) + n ( t ) X(t)=A(\theta)S(k)+n(t) X(t)=A(θ)S(k)+n(t)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值