1、复信号的表示
实际信号只存在实信号,不存在复信号。
那么什么时候用实信号?什么时候用复信号呢?
—实际信号的传输总是用实信号,而在信号处理中则用复信号。
采用复信号表示法不仅可以节省频带资源,同时方便计算,而且由于复信号的实部和虚部正好与接收机中的同相支路(I)和正交支路(Q)相对应,所以在系统中采用复信号表示法。
补充理解:
低通(LP)信号:信号包含的主要频率处于包括直流(DC)在内的低频频带;
带通(BP)信号:信号包含的主要频率处于离开原点的某个频率附近。
一个实带通信号
s
(
t
)
s(t)
s(t)在数学上可以表示为:
s
(
t
)
=
r
(
t
)
c
o
s
[
2
π
f
0
t
+
ϕ
x
(
t
)
]
s(t)=r(t)cos[2πf_0t+\phi_x(t)]
s(t)=r(t)cos[2πf0t+ϕx(t)]
其中,
r
(
t
)
r(t)
r(t)是幅度调制或包络,
ϕ
x
(
t
)
\phi_x(t)
ϕx(t)为相位调制,调制频率为
f
m
(
t
)
=
1
2
π
d
ϕ
x
(
t
)
d
t
f_m(t)=\frac{1}{2\pi}\frac{\mathrm{d}\phi_x(t)}{\mathrm{d}t}
fm(t)=2π1dtdϕx(t),
f
0
(
t
)
f_0(t)
f0(t)是载波频率。
s
(
t
)
s(t)
s(t)也可以用两个称为正交分量的低通信号表示:
s
(
t
)
=
I
(
t
)
c
o
s
2
π
f
0
t
−
Q
(
t
)
s
i
n
2
π
f
0
t
s(t)=I(t)cos2πf_0t-Q(t)sin2πf_0t
s(t)=I(t)cos2πf0t−Q(t)sin2πf0t
其中,
I
(
t
)
=
r
(
t
)
c
o
s
ϕ
x
(
t
)
I(t)=r(t)cos\phi_x(t)
I(t)=r(t)cosϕx(t),
Q
(
t
)
=
r
(
t
)
s
i
n
ϕ
x
(
t
)
Q(t)=r(t)sin\phi_x(t)
Q(t)=r(t)sinϕx(t)
- 发射机所发射的信号形态-【正交上变频系统】:
其中 I ( t ) I(t) I(t)与 Q ( t ) Q(t) Q(t)是正交基带信号, I ( t ) I(t) I(t)为信号同相部分(In-phase), Q ( t ) Q(t) Q(t)为信号正交部分(quadrature),数字正交上变频系统的输出 s ( t ) s(t) s(t)包含了信号的同相部分和正交部分,即包含了信号的幅度信息和相位信息,便于后续的信号处理。 - 接收机所接收的信号形态-【正交下变频系统】:
2、基本概念补充
2.1 载波:在通信技术上,载波(carrier wave, carrier signal或carrier)是由振荡器产生并在通讯信道上传输的电波,载波或者载频(载波频率)是一个物理概念,是一个特定频率的无线电波,单位是Hz,是一种在频率、幅度或相位方面被调制以传输语言、音频、图象或其它信号的电磁波。载波频率通常比输入信号的频率高,属于高频信号,输入信号调制到一个高频载波上,就好像搭乘了一列高铁或一架飞机一样,然后再被发射和接收。因此,载波是传送信息(话音和数据)的物理基础和承载工具。
2.2 调制(modulation):对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式,就是使载波随信号而改变的技术。
2.3 零中频:将载频变频为零。正交下变频得到的就是零中频信号。
传统的调制解调方式是无线电信号RF(射频)进入天线,转换为IF(中频),再转换为基带(I、Q信号);
零中频就是信号直接由RF变到基带,不经过中频的调制解调方法。
2.4 平面波(plane wave):传播时波面(即波的等相面)为平面的电磁波,实际中并不存在平面波。
2.5 相干时间:信道保持恒定的最大时间差范围,发射端的同一信号在相干时间之内到达接收端,信号的衰落特性完全相似,接收端认为是一个信号。
2.6 相干带宽:表征多径信道特性的一个重要参数,是指某一特定的频率范围,在该频率范围内的任意两个频率分量都具有很强的幅度相关性,即在相干带宽范围内,多径信道具有恒定的增益和线性相位。
通常,相干带宽近似等于最大多径时延的倒数.
3、窄带信号的定义
根据信号带宽的不同,可将信号分为窄带信号和宽带信号。窄带信号与宽带信号的定义是相对的,没有一个非常严格的界限,一般认为不符合窄带信号条件的就是宽带信号。根据侧重内容不同,窄带信号由如下三种定义,满足其中之一,就可视为是窄带信号,否则为宽带信号。
假设信号为 s ( t ) s(t) s(t),其所对应的频谱为 S ( f ) S(f) S(f)
-
定义1:相对带宽定义
W B / f 0 < 1 / 10 W_B/f_0<1/10 WB/f0<1/10
其中, W B W_B WB为信号带宽, f 0 f_0 f0为信号的中心频率:
W B = ∫ − ∞ ∞ f ∣ S ( f ) ∣ 2 d f ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 d f W_B=\sqrt{\frac{ \int_{-\infty}^{\infty} f{\left|S(f)\right|}^2\, df}{\int_{-\infty}^{\infty} {\left|S(f)\right|}^2\, df}} WB=∫−∞∞∣S(f)∣2df∫−∞∞f∣S(f)∣2df
f 0 = ∫ − ∞ ∞ f ∣ S ( f ) ∣ 2 d f ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 d f f_0=\frac{ \int_{-\infty}^{\infty} f{\left|S(f)\right|}^2\, df}{\int_{-\infty}^{\infty} {\left|S(f)\right|}^2\, df} f0=∫−∞∞∣S(f)∣2df∫−∞∞f∣S(f)∣2df
定义1是指,窄带信号的带宽 W B W_B WB与其中心频率 f 0 f_0 f0相比可以忽略。 -
定义2:相对阵列定义
( M − 1 ) d c ≪ 1 W B \frac{(M-1)d}{c} \ll \frac{1}{W_B} c(M−1)d≪WB1
其中, M M M为阵元数目, d d d为阵元间距, c c c为信号在媒介中的传播速度。
定义2是指,在阵列信号处理中,窄带信号掠过阵列孔径的最大传播时间远远小于信号带宽的倒数。 -
定义3:相对速度定义
2 V d c ≪ 1 T ⋅ W B \frac{2V_d}{c}\ll\frac{1}{T\cdot W_B} c2Vd≪T⋅WB1
其中, V d V_d Vd是信号相对于阵列的径向运动速度, T T T为信号的有效时宽:
T = ∫ − ∞ ∞ t 2 ∣ s ( t ) ∣ 2 d t ∫ − ∞ ∞ ∣ s ( t ) ∣ 2 d t T=\sqrt{\frac{ \int_{-\infty}^{\infty} t^2{\left|s(t)\right|}^2\, dt}{\int_{-\infty}^{\infty} {\left|s(t)\right|}^2\, dt}} T=∫−∞∞∣s(t)∣2dt∫−∞∞t2∣s(t)∣2dt
T ⋅ W B T\cdot W_B T⋅WB是信号的时宽带宽积。
定义3是指,在信号与阵列存在相对运动的系统中,在信号的持续时间 T T T内相对于信号的距离分辨力,若目标没有明显的移动,即目标为慢起伏的,则信号可视为是窄带的,否则为宽带的。
4、均匀线阵接收模型
假设接收信号满足窄带条件,根据窄带信号定义2,即信号经过阵列长度所需要的时间应远远小于信号的相干时间,信号包络在天线阵传播时间内变化不大,即可认为
s
(
t
+
Δ
τ
)
=
s
(
t
)
s(t+\Delta\tau) =s(t)
s(t+Δτ)=s(t)。为简化,假定信源和天线阵列在同一平面内,并且入射到天线阵为平面波,如图所示
其中,
θ
\theta
θ为来波方向,
d
d
d为阵元间距.
一般要求
d
≤
λ
2
d\leq\frac{\lambda}{2}
d≤2λ
∥
\rVert
∥因为相位测量只能测量
[
0
,
2
π
]
[0,2\pi]
[0,2π]范围之内,即要求
∣
2
π
d
s
i
n
θ
λ
∣
≤
π
⇒
2
π
d
λ
≤
π
⇒
d
≤
λ
2
\begin{vmatrix} \frac{2\pi d sin\theta}{\lambda} \end{vmatrix}\leq\pi\Rightarrow\frac{2\pi d}{\lambda}\leq\pi\Rightarrow d\leq\frac{\lambda}{2}
∣∣λ2πdsinθ∣∣≤π⇒λ2πd≤π⇒d≤2λ
x
1
(
t
)
=
s
(
t
)
e
j
2
π
f
0
t
x_1(t)=s(t)e^{j2πf_0t}
x1(t)=s(t)ej2πf0t
x
2
(
t
)
=
x
1
(
t
+
Δ
τ
)
=
s
(
t
+
Δ
τ
)
e
j
2
π
f
0
(
t
+
Δ
τ
)
x_2(t)=x_1(t+\Delta\tau)=s(t+\Delta\tau)e^{j2πf_0(t+\Delta\tau)}
x2(t)=x1(t+Δτ)=s(t+Δτ)ej2πf0(t+Δτ)
…
\dots
…
x
N
(
t
)
=
x
1
[
t
+
(
N
−
1
)
Δ
τ
]
=
s
[
t
+
(
N
−
1
)
Δ
τ
]
e
j
2
π
f
0
[
t
+
(
N
−
1
)
Δ
τ
)
]
x_N(t)=x_1[t+(N-1)\Delta\tau]=s[t+(N-1)\Delta\tau]e^{j2πf_0[t+(N-1)\Delta\tau)]}
xN(t)=x1[t+(N−1)Δτ]=s[t+(N−1)Δτ]ej2πf0[t+(N−1)Δτ)]
满足窄带假设
可以简化为
x
1
(
t
)
=
s
(
t
)
e
j
2
π
f
0
t
x_1(t)=s(t)e^{j2πf_0t}
x1(t)=s(t)ej2πf0t
x
2
(
t
)
=
s
(
t
)
e
j
2
π
f
0
t
e
j
2
π
d
s
i
n
θ
λ
x_2(t)=s(t)e^{j2πf_0t}e^{\frac{j2πdsin\theta}{\lambda}}
x2(t)=s(t)ej2πf0teλj2πdsinθ
…
\dots
…
x
N
(
t
)
=
s
(
t
)
e
j
2
π
f
0
t
e
j
2
π
(
N
−
1
)
d
s
i
n
θ
λ
x_N(t)=s(t)e^{j2πf_0t}e^{\frac{j2π(N-1)dsin\theta}{\lambda}}
xN(t)=s(t)ej2πf0teλj2π(N−1)dsinθ
那么对于单个辐射源,阵列接收信号
X
(
t
)
=
[
x
1
(
t
)
x
2
(
t
)
⋯
x
N
(
t
)
]
X(t)=\begin{bmatrix} x_1(t)\\ x_2(t)\\ \cdots\\ x_N(t)\\ \end{bmatrix}
X(t)=⎣⎢⎢⎡x1(t)x2(t)⋯xN(t)⎦⎥⎥⎤
=
s
(
t
)
e
j
2
π
f
0
t
[
1
e
j
2
π
d
s
i
n
θ
λ
⋯
e
j
2
π
(
N
−
1
)
d
s
i
n
θ
λ
]
=s(t)e^{j2πf_0t}\begin{bmatrix} 1\\ e^{\frac{j2πdsin\theta}{\lambda}}\\ \cdots\\ e^{\frac{j2π(N-1)dsin\theta}{\lambda}}\\ \end{bmatrix}
=s(t)ej2πf0t⎣⎢⎢⎡1eλj2πdsinθ⋯eλj2π(N−1)dsinθ⎦⎥⎥⎤(零中频变频后)
⇒
a
⃗
(
θ
)
s
(
t
)
\Rightarrow\vec{a}(\theta)s(t)
⇒a(θ)s(t),
其中,
a
⃗
(
θ
)
\vec{a}(\theta)
a(θ)叫作导向矢量,为
N
×
1
N×1
N×1的矩阵
推广至多个辐射源(
θ
1
,
θ
2
,
⋯
,
θ
k
\theta_1,\theta_2,\cdots,\theta_k
θ1,θ2,⋯,θk)
X
(
t
)
=
a
⃗
(
θ
1
)
s
1
(
t
)
+
a
⃗
(
θ
2
)
s
2
(
t
)
+
⋯
+
a
⃗
(
θ
k
)
s
k
(
t
)
=
[
a
⃗
(
θ
1
)
a
⃗
(
θ
2
)
⋯
a
⃗
(
θ
k
)
]
[
s
1
(
t
)
s
2
(
t
)
⋯
s
k
(
t
)
]
=
A
(
θ
)
S
(
k
)
\begin{aligned}X(t)&=\vec{a}(\theta_1)s_1(t)+\vec{a}(\theta_2)s_2(t)+\cdots+\vec{a}(\theta_k)s_k(t) =\begin{bmatrix} \vec{a}(\theta_1) & \vec{a}(\theta_2) & \cdots & \vec{a}(\theta_k) \\ \end{bmatrix} \begin{bmatrix} s_1(t)\\ s_2(t)\\ \cdots \\ s_k(t)\\ \end{bmatrix}\\ &=A(\theta)S(k) \end{aligned}
X(t)=a(θ1)s1(t)+a(θ2)s2(t)+⋯+a(θk)sk(t)=[a(θ1)a(θ2)⋯a(θk)]⎣⎢⎢⎡s1(t)s2(t)⋯sk(t)⎦⎥⎥⎤=A(θ)S(k)
其中,
A
(
θ
)
为
N
×
k
的
矩
阵
,
S
(
k
)
为
k
×
1
的
矩
阵
A(\theta)为N×k的矩阵,S(k)为k×1的矩阵
A(θ)为N×k的矩阵,S(k)为k×1的矩阵
考虑到噪声影响,
n
(
t
)
=
[
n
1
(
t
)
n
2
(
t
)
⋯
n
N
(
t
)
]
n(t)=\begin{bmatrix} n_1(t)\\ n_2(t)\\ \cdots \\ n_N(t)\\ \end{bmatrix}
n(t)=⎣⎢⎢⎡n1(t)n2(t)⋯nN(t)⎦⎥⎥⎤
均匀线阵接收信号模型为
X
(
t
)
=
A
(
θ
)
S
(
k
)
+
n
(
t
)
X(t)=A(\theta)S(k)+n(t)
X(t)=A(θ)S(k)+n(t)