信号处理--傅里叶变换的性质及常用信号的傅里叶变换

本文深入探讨了傅里叶变换的应用,即使在函数不满足绝对可积条件下,通过引入广义函数的概念,也能进行变换。详细阐述了冲激函数、冲激函数导数、单位直流信号、符号函数及阶跃函数的频谱特性,揭示了这些奇异函数在信号与系统分析中的重要性。
摘要由CSDN通过智能技术生成

一、前言

傅里叶变换的定义式
在这里插入图片描述

函数f(t)的傅里叶变换存在的充分条件是在无限区间内f(t)绝对可积,但它并非必要条件。
在这里插入图片描述
当引入广义函数的概念后,许多不满足绝对可积条件的函数也能进行傅里叶变换,这给信号与系统分析带来很大方便。

二、傅里叶变换的性质

在这里插入图片描述

三、奇异函数的傅里叶变换

1、冲激函数的频谱

方法一:根据傅里叶变换的定义式,并且考虑到冲激函数的取样性质,得
在这里插入图片描述
    其频谱密度在-∞<w<∞区间处处相等,常称为“均匀谱”或“白色频谱”。

方法二:应用广义极限的概念,单位冲激函数δ(t)是幅度为1/τ,脉宽为τ的矩形脉冲当τ→0的广义极限,因而可以写为
在这里插入图片描述
  门函数的傅里叶变换
在这里插入图片描述
  因而
在这里插入图片描述
  所以
在这里插入图片描述

2、冲激函数导数的频谱

  冲激函数导数定义式为
在这里插入图片描述
  其中φ(t)为检验函数,φ(t)是急降的。
  按广义函数理论,由于选取了性能良好的检验函数空间 Φ,广义函数的各阶导数都存在并且仍属于缓增广义函数空间 Φ’。

  根据定义,冲激函数的一阶导数δ’(t)的频谱函数为
在这里插入图片描述
  即δ’(t)的频谱函数为
在这里插入图片描述

在这里插入图片描述

3、单位直流信号的频谱

  幅度等于1的直流信号可表示为 f(t)=1, -∞ < t < ∞
  显然,该信号不满足绝对可积条件,但其傅里叶变换却存在。
  根据傅里叶变换的性质(对称性),可得
在这里插入图片描述

4、符号函数的频谱

  符号函数记作sgn(t),它的定义为
在这里插入图片描述
  显然,该函数也不满足绝对可积条件。
  函数sgn(t)可看作是
在这里插入图片描述
  当α趋于0时的极限,因此其频谱函数也是f1(t)的频谱函数F1(jw) 当α趋于0时的极限。
在这里插入图片描述
  它是ω的奇函数,在ω=0处F1(0)=0,因此当α趋近于零时,有
在这里插入图片描述
  于是得
在这里插入图片描述

5、阶跃函数的频谱

  单位阶跃函数u(t)也不满足绝对可积条件。它可看作是幅度为½的直流信号与幅度为½的符号函数之和,即
在这里插入图片描述
  对上式两边进行傅里叶变换,得
在这里插入图片描述

四、常用信号的傅里叶变换表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在视频图像处理中,傅里叶变换是一种非常重要的数学工具,它可用于将图像从空间域转换到频率域。通过傅里叶变换,我们可以将图像分解为多个频率的成分,这些成分可以用于图像压缩、去噪、增强等方面的应用。 在进行傅里叶变换实验时,我们通常会对图像进行以下操作: 1. 对图像进行灰度化处理,将图像转换为灰度图像。 2. 对灰度图像进行傅里叶变换,得到频域图像。 3. 对频域图像进行滤波或者其他操作,比如高通滤波、低通滤波、带通滤波等。 4. 对处理后的频域图像进行傅里叶反变换,将图像从频率域转换回空间域。 通过实验,我们可以得到以下结论: 1. 高通滤波可以去除图像中的低频成分,从而使得图像的细节更加清晰。 2. 低通滤波可以去除图像中的高频成分,从而使得图像更加平滑。 3. 带通滤波可以保留某个特定频率范围内的成分,从而使得图像在这个频率范围内更加清晰。 4. 在进行傅里叶变换时,需要对图像进行填充,否则会出现边界效应。 5. 在进行傅里叶反变换时,需要对得到的频域图像进行中心化,否则会出现图像失真的情况。 综上所述,傅里叶变换是图像处理中非常重要的工具,通过对图像进行傅里叶变换和反变换,我们可以得到不同频率范围内的成分,并且可以对这些成分进行滤波、增强等处理,从而实现对图像的各种操作。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值