联邦学习综述

本文是关于联邦学习的综述,介绍了其出现原因,包括数据不充分或不完整。详细阐述纵向、横向联邦学习流程,如纵向的加密样本对齐、加密模型训练和效果激励,横向的模型下载、训练、聚合更新等。还对比了联邦学习与数据中心分布式学习的区别,指出其数据偏见性和通信限制等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测综述-CSDN博客

持续学习综述-CSDN博客

联邦学习综述-CSDN博客

少样本.单样本.无样本学习 综述-CSDN博客

预处理和损失函数-CSDN博客

对比学习综述-CSDN博客


联邦学习出现的原因:联邦双方数据不充分或者数据不完整(一方只有标签、一方只有特征数据)

纵向联邦:样本重叠多,特征重叠少,拓展特征维

第一部分:加密样本对齐。由于两家企业的用户群体并非完全重合,系统利用基于加密的用户样本对齐技术,在 A 和 B 不公开各自数据的前提下确认双方的共有用户,并且不暴露不互相

### 关于2021年联邦学习综述 #### 数据划分与隐私保护机制 在探讨2021年的联邦学习进展时,一个重要方面在于如何有效地处理数据分布不均的问题以及保障用户隐私安全。文献指出,在联邦学习框架下,各参与方的数据集往往是非独立同分布(non-IID),这给模型收敛带来了挑战[^1]。 #### 机器学习模型优化 针对不同应用场景下的需求,研究人员探索了多种适用于联邦环境的学习算法改进方案。例如通过引入差分隐私技术来增强个体数据的安全防护水平;或是设计轻量级网络架构以适应资源受限设备的需求。 #### 通信效率提升策略 为了克服分布式计算过程中可能遇到的带宽瓶颈问题,学术界提出了诸如梯度压缩、量化传输等一系列方法论创新措施。这些手段不仅有助于降低整体通讯成本,同时也促进了跨机构间协作模式的发展成熟。 #### 应对系统异构性的解决方案 考虑到实际部署环境中存在的硬件配置差异较大这一现实情况,相关研究致力于构建更加灵活通用的技术平台。具体而言,就是让整个生态系统能够兼容不同类型终端的同时保持高效运作状态。 #### 面临的主要挑战与发展前景展望 尽管取得了诸多成果,但现阶段仍存在不少亟待解决的关键难题等待突破——比如提高抗攻击能力防止恶意干扰行为的发生;进一步简化操作流程以便更多行业采纳利用等等。未来几年内预计会有更多围绕这些问题展开深入探究的工作涌现出来。 ```python # 示例代码展示了一个简单的模拟联邦平均(FedAvg)算法实现 def federated_average(models): global_model = sum([model.parameters() for model in models]) / len(models) return global_model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值