预处理和损失函数

本文概述了目标检测、持续学习、联邦学习等领域的基础,重点介绍了预处理技术(如归一化和标准化)、常用的损失函数(如L1、L2、Huber、Hinge和交叉熵),以及交叉熵在多分类问题中的应用,还包括InfoNCE的概念。
摘要由CSDN通过智能技术生成

目标检测综述-CSDN博客

持续学习综述-CSDN博客

联邦学习综述-CSDN博客

少样本.单样本.无样本学习 综述-CSDN博客

预处理和损失函数-CSDN博客

对比学习综述-CSDN博客


预处理:

归一化某个特征的值会被映射到[0,1]之间

标准化得到的特征满足均值为0,标准差为1的正态分布(标准正态分布)

归一化和标准化都可以消除量纲的影响,使得原本可能分布相差较大的特征对模型有相同权重的影响               量纲:不同特征量化的分布范围不同,导致特征对输出的影响不同

处理图像数据,每个像素点是一个特征,特征分布为[0,255],不同特征的分布是一样的,不存在量纲的问题,所以归一化或标准化是不必要的,而只需要做零均值化---x-x

损失函数:(应该说的代价函数)

L1损失: L1对离群点相对鲁棒 ,但其导数为常数,且在0处不可导;这会导致训练后期预测值与真实值差异很小时,L1难以继续收敛

L2损失/平方损失: L2对离群点非常敏感,因为L2范数将误差平方化(如果误差大于1,则误差会放大很多),最终造成梯度爆炸

Huber Loss结合L1的健壮性和L2的快速收敛,[-α,α]为L2,其余为L1

Hinge 损失函数:让某个正确分类的样本距离分割线超过1并不会有任何奖励,从而使分类器可以更专注于整体的误差

交叉熵损失(CrossEntropy Loss):

      信息量:信息量的大小与信息发生的概率成反比,设某一事件发生的概率为P(x),其信息量表示为: log表示以e为底的自然对数。

      信息熵:每次可能结果的概率乘以其结果的总和

      相对熵/KL散度:随机变量有两个单独的概率分布P(x)和Q(x),则我们可以使用KL散度来衡量这两个概率分布之间的差异

交叉熵:将KL散度公式拆开:

前者 H(p(x))表示信息熵,后者即为交叉熵,KL散度 = 交叉熵 - 信息熵。交叉熵公式表示为:

交叉熵损失函数:二分类:  y 表示实际的标签, a 表示预测的输出。多分类:由于yi是一个one-hot 向量,除了目标类为1之外其他类别上的输出都为0,因此上式也可以写为多分类交叉熵也称为 Softmax Loss 或者 Categorical Cross Entropy Loss

交叉熵在分类问题中常常与是标配,softmax将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。

infoNCE

K+为真值q得正对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值