ACT:非对称协同训练的半监督域自适应医学图像分割

ACT: Semi-supervised Domain-Adaptive Medical Image Segmentation with Asymmetric Co-training

摘要

作者建议以统一的方式利用标记的源域和目标域数据,以及未标记的目标数据

  1. 提出了一种新的非对称协同训练(ACT)框架来集成这些子集,避免源域数据的支配。
  2. 将SSDA中的标签监督解耦为两个非对称子任务,包括半监督学习(SSL)和UDA,并利用来自两个分割器的不同知识来考虑源标签监督和目标标签监督之间的区别。
  3. 然后,通过基于置信度感知伪标签迭代地相互教学,将在两个模块中学习的知识自适应地与ACT集成。此外,伪标签噪声通过指数MixUp衰减方案得到了很好的控制,以实现平滑传播。

本文方法

在这里插入图片描述
我们配置了一个跨域UDA分割器φ和一个目标域SSL分割器θ,它们的共同目标是在Dut中实现良好的分割性能。然后将从两个分割器学习到的知识与ACT进行集成。
在这里插入图片描述
较低的softmax预测概率表示训练的置信度较低。然后,将所选伪标签集中的像素与标记数据合并,以分别构造{Ds,Uθ}和{Dlt,Uφ},用于训练具有常规监督分割损失的φ和θ。因此,具有不对称任务的两个分割器充当彼此的老师和学生,以高度自信的预测提取知识。


通过将Ds或Dlt与伪标记的Dut混合来逐渐利用伪标记,并使用EMD方案调整它们的比例。对于切片数为|Uφ|和|Uθ|的所选Uφ和Uθ,我们将每个伪标记图像与来自Ds或Dlt的所有图像混合,以形成混合的伪标记集Uθ~和Uφ-。具体而言,我们的EMD可以公式化为:
在这里插入图片描述

在这里插入图片描述
我感觉就是不断的迭代更新伪标签的得到更为准确的结果

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
分析了我们基于ACT的SSDA对整个肿瘤的分割任务:
(a) 两个、只有一个或没有一个分割器对
(b)不同数量的标记目标域训练对象的性能改进具有高置信度的测试像素的比例
(c)改变不同比例的敏感性研究。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值