Automatic Segmentation of Internal Tooth Structure from CBCT Images Using Hierarchical Deep Learning

Automatic Segmentation of Internal Tooth Structure from CBCT Images Using Hierarchical Deep Learning

摘要

精确分割牙齿内部结构的自动化方法

牙齿的精确分割对于治疗规划至关重要。然而,以往的方法往往将牙齿视为一个整体进行分割,忽略了牙齿内部结构的重要性。本文提出了一种完全自动化的方法,用于分割牙齿的内部结构,包括牙釉质、牙本质和牙髓。这项任务具有挑战性,因为需要从CBCT图像中准确地识别96种不同的牙齿结构。

设计了一个包含粗到精分割的三阶段过程,旨在在不降低原始分辨率的情况下实现牙齿内部结构的精确分割。为了有效地捕获牙齿的分层结构,提出了双层次U-Net(DHU-Net),该网络能够有效地融合来自不同层次的编码器和解码器特征。通过这种方式,我们能够更好地理解牙齿的内部组织,并实现对不同结构的准确分割。

方法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
感觉就是多任务框架

实验结果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

As an AI language model, I can suggest some possible steps for automatic tooth instance segmentation and identification from cone beam CT images: 1. Pre-processing: The first step is to pre-process the CBCT images to remove noise, artifacts, and other image distortions. This can be achieved through various image processing techniques, such as filtering, thresholding, and morphological operations. 2. Tooth segmentation: The next step is to segment the individual teeth from the CBCT images. This can be done using various segmentation algorithms, such as region-growing, active contours, and watershed-based techniques. The segmentation can be further refined by incorporating shape and texture information. 3. Tooth instance identification: Once the individual teeth are segmented, the next step is to identify the specific tooth instance (e.g., mandibular left central incisor). This can be done using various methods, such as template matching, feature extraction, and machine learning-based approaches. 4. Post-processing: Finally, the segmented teeth and identified instances can be post-processed to remove any remaining artifacts or noise. This can be achieved through various techniques, such as smoothing, filtering, and morphological operations. Overall, automatic tooth instance segmentation and identification from CBCT images is a challenging task that requires the integration of various image processing, computer vision, and machine learning techniques. However, with recent advancements in AI and deep learning, there is great potential for developing accurate and reliable automated systems for dental image analysis.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值