文章目录
STAR-Echo: A Novel Biomarker for Prognosis of MACE in Chronic Kidney Disease Patients Using Spatiotemporal Analysis and Transformer-Based Radiomics Models
摘要
慢性肾脏病(CKD)患者患有主要不良心血管事件(MACE)的风险较高。超声心动图评估左心室(LV)功能和心脏异常。LV壁(LVW)的病理生理学和收缩期/舒张期功能与CKD患者的MACE结果(O-和O+)相关联。然而,传统的基于LV容积的测量,如射血分数,其预测价值有限,因为它们仅依赖于末期帧。
我们假设通过时空分析,对比分析LVW的形态可以预测CKD患者的MACE风险。然而,由于噪声、分辨率低和需要手动干预,准确地描绘和分析每个帧的LVW是具有挑战性的。
本文包括:
(a)开发一个自动化流水线,用于识别和标准化心跳周期,并分割LVW;
(b)引入一个新颖的计算生物标志物—STAR-Echo—它结合了来自放射组学(MR)和深度学习(MT)模型的时空风险,用于预测CKD患者的MACE预后;
(c