文章目录
Interpretable Deep Biomarker for Serial Monitoring of Carotid Atherosclerosis Based on Three-Dimensional Ultrasound Imaging
摘要
本文开发了一种名为Siamese Change Biomarker Generation Network(SCBG-Net)的可解释深度生物标志物,用于评估治疗对颈动脉粥样硬化的影响。SCBG-Net基于从三维超声(3DUS)图像中提取的血管壁和斑块体积及纹理特征进行评估。SCBG-Net是第一个用于连续监测颈动脉斑块变化的深度网络。
SCBG-Net自动整合从3DUS中提取的体积和纹理特征,生成一个称为AutoVT(自动整合体积和纹理特征)的变化生物标志物,该标志物对饮食治疗敏感。
提出的AutoVT提高了临床试验的成本效益,从而减少了新型抗动脉粥样硬化治疗方法被需要治疗的患者搁置的时间。为了便于解释AutoVT,我们开发了一种算法生成变化生物标志物激活图(CBAM),该图定位对AutoVT有重要影响的区域。CBAM提供了斑块显著进展/回归的位置可视化,改善了所提出的深度生物标志物的可解释性。可解释性的提高将使深度生物标志物获得临床医生的足够信任,从而将模型纳入临床工作流程。
方法
体积纹理:resnet50
neighborhood slice smoothing:维度对齐,取平均
然后上下对应相似性运算过后取平均
CBAM通过对网络不同级别的特征图进行线性加权来生成激活图。然而,与CBAM中注意力图相关的权重是为SCBG-Net量身定制的。
实验结果